Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 75(3): 917-934, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37843921

ABSTRACT

Proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyse the oxidation of proline into glutamate via the intermediates P5C and glutamate-semialdehyde (GSA), which spontaneously interconvert. P5C and GSA are also intermediates in the production of glutamate from ornithine and α-ketoglutarate catalysed by ornithine δ-aminotransferase (OAT). ProDH and P5CDH form a fused bifunctional PutA enzyme in Gram-negative bacteria and are associated in a bifunctional substrate-channelling complex in Thermus thermophilus; however, the physical proximity of ProDH and P5CDH in eukaryotes has not been described. Here, we report evidence of physical proximity and interactions between Arabidopsis ProDH, P5CDH, and OAT in the mitochondria of plants during dark-induced leaf senescence when all three enzymes are expressed. Pairwise interactions and localization of the three enzymes were investigated using bimolecular fluorescence complementation with confocal microscopy in tobacco and sub-mitochondrial fractionation in Arabidopsis. Evidence for a complex composed of ProDH, P5CDH, and OAT was revealed by co-migration of the proteins in native conditions upon gel electrophoresis. Co-immunoprecipitation coupled with mass spectrometry analysis confirmed the presence of the P5C metabolism complex in Arabidopsis. Pull-down assays further demonstrated a direct interaction between ProDH1 and P5CDH. P5C metabolism complexes might channel P5C among the constituent enzymes and directly provide electrons to the respiratory electron chain via ProDH.


Subject(s)
Arabidopsis , Pyrroles , Arabidopsis/metabolism , Proline Oxidase/chemistry , Proline Oxidase/metabolism , Mitochondria/metabolism , Glutamates/metabolism , Ornithine/metabolism , Proline/metabolism
2.
Basic Res Cardiol ; 118(1): 33, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37639039

ABSTRACT

While low concentrations of high-density lipoprotein-cholesterol (HDL-C) are widely accepted as an independent cardiovascular risk factor, HDL-C-rising therapies largely failed, suggesting the importance of both HDL functions and individual subspecies. Indeed HDL particles are highly heterogeneous, with small, dense pre-beta-HDLs being considered highly biologically active but remaining poorly studied, largely reflecting difficulties for their purification. We developed an original experimental approach allowing the isolation of sufficient amounts of human pre-beta-HDLs and revealing the specificity of their proteomic and lipidomic profiles and biological activities. Pre-beta-HDLs were enriched in highly poly-unsaturated species of phosphatidic acid and phosphatidylserine, and in an unexpectedly high number of proteins implicated in the inflammatory response, including serum paraoxonase/arylesterase-1, vitronectin and clusterin, as well as in complement regulation and immunity, including haptoglobin-related protein, complement proteins and those of the immunoglobulin class. Interestingly, amongst proteins associated with lipid metabolism, phospholipid transfer protein, cholesteryl ester transfer protein and lecithin:cholesterol acyltransferase were strongly enriched in, or restricted to, pre-beta-HDL. Furthermore, pre-beta-HDL potently mediated cellular cholesterol efflux and displayed strong anti-inflammatory activities. A correlational network analysis between lipidome, proteome and biological activities highlighted 15 individual lipid and protein components of pre-beta-HDL relevant to cardiovascular disease, which may constitute novel diagnostic targets in a pathological context of altered lipoprotein metabolism.


Subject(s)
Cardiovascular Diseases , Humans , Proteomics , Cholesterol, HDL , Heart Disease Risk Factors , Lipid Metabolism
4.
J Exp Bot ; 74(5): 1489-1500, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36528796

ABSTRACT

Proline is an amino acid that is degraded in the mitochondria by the sequential action of proline dehydrogenase (ProDH) and pyrroline-5-carboxylate dehydrogenase (P5CDH) to form glutamate. We investigated the phenotypes of Arabidopsis wild-type plants, the knockout prodh1 prodh2 double-mutant, and knockout p5cdh allelic mutants grown at low and high nitrate supplies. Surprisingly, only p5cdh presented lower seed yield and produced lighter seeds. Analyses of elements in above-ground organs revealed lower C concentrations in the p5cdh seeds. Determination of C, N, and dry matter partitioning among the above-ground organs revealed a major defect in stem-to-seed resource allocations in this mutant. Again surprisingly, defects in C, N, and biomass allocation to seeds dramatically increased in high-N conditions. 15N-labelling consistently confirmed the defect in N remobilization from the rosette and stem to seeds in p5cdh. Consequently, the p5cdh mutants produced morphologically abnormal, C-depleted seeds that displayed very low germination rates. The most striking result was the strong amplification of the N-remobilization defects in p5cdh under high nitrate supply, and interestingly this phenotype was not observed in the prodh1 prodh2 double-mutant irrespective of nitrate supply. This study reveals an essential role of P5CDH in carbon and nitrogen remobilization for reserve accumulation during seed development in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbon/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Plants/metabolism , Proline Oxidase/genetics , Proline Oxidase/metabolism , Seeds
5.
Plant Cell Environ ; 46(3): 901-917, 2023 03.
Article in English | MEDLINE | ID: mdl-36583533

ABSTRACT

During leaf senescence, nitrogen is remobilized and carbon backbones are replenished by amino acid catabolism, with many of the key reactions occurring in mitochondria. The intermediate Δ1 -pyrroline-5-carboxylate (P5C) is common to some catabolic pathways, thus linking the metabolism of several amino acids, including proline and arginine. Specifically, mitochondrial proline catabolism involves sequential action of proline dehydrogenase (ProDH) and P5C dehydrogenase (P5CDH) to produce P5C and then glutamate. Arginine catabolism produces urea and ornithine, the latter in the presence of α-ketoglutarate being converted by ornithine δ-aminotransferase (OAT) into P5C and glutamate. Metabolic changes during dark-induced leaf senescence (DIS) were studied in Arabidopsis thaliana leaves of Col-0 and in prodh1prodh2, p5cdh and oat mutants. Progression of DIS was followed by measuring chlorophyll and proline contents for 5 days. Metabolomic profiling of 116 compounds revealed similar profiles of Col-0 and oat metabolism, distinct from prodh1prodh2 and p5cdh metabolism. Metabolic dynamics were accelerated in p5cdh by 1 day. Notably, more P5C and proline accumulated in p5cdh than in prodh1prodh2. ProDH1 enzymatic activity and protein amount were significantly down-regulated in p5cdh mutant at Day 4 of DIS. Mitochondrial P5C levels appeared critical in determining the flow through interconnected amino acid remobilization pathways to sustain senescence.


Subject(s)
Arabidopsis , Amino Acids/metabolism , Arabidopsis/metabolism , Arginine/metabolism , Glutamates/metabolism , Ornithine/metabolism , Proline/metabolism , Proline Oxidase/genetics , Proline Oxidase/metabolism
6.
J Exp Bot ; 72(20): 6856-6866, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34331757

ABSTRACT

The amino acid proline has been known for many years to be a component of proteins as well as an osmolyte. Many recent studies have demonstrated that proline has other roles such as regulating redox balance and energy status. In animals and plants, the well-described proline cycle is concomitantly responsible for the preferential accumulation of proline and shuttling of redox equivalents from the cytosol to mitochondria. The impact of the proline cycle goes beyond regulating proline levels. In this review, we focus on recent evidence of how the proline cycle regulates redox status in relation to other redox shuttles. We discuss how the interconversion of proline and glutamate shuttles reducing power between cellular compartments. Spatial aspects of the proline cycle in the entire plant are considered in terms of proline transport between organs with different metabolic regimes (photosynthesis versus respiration). Furthermore, we highlight the importance of this shuttle in the regulation of energy and redox power in plants, through a particularly intricate coordination, notably between mitochondria and cytosol.


Subject(s)
Eukaryota , Proline , Animals , Mitochondria/metabolism , Oxidation-Reduction , Photosynthesis , Proline/metabolism
7.
Atherosclerosis ; 324: 1-8, 2021 05.
Article in English | MEDLINE | ID: mdl-33798922

ABSTRACT

BACKGROUND AND AIMS: While low concentrations of high-density lipoprotein-cholesterol (HDL-C) represent a well-established cardiovascular risk factor, extremely high HDL-C is paradoxically associated with elevated cardiovascular risk, resulting in the U-shape relationship with cardiovascular disease. Free cholesterol transfer to HDL upon lipolysis of triglyceride-rich lipoproteins (TGRL) was recently reported to underlie this relationship, linking HDL-C to triglyceride metabolism and atherosclerosis. In addition to free cholesterol, other surface components of TGRL, primarily phospholipids, are transferred to HDL during lipolysis. It remains indeterminate as to whether such transfer is linked to HDL-C and cardiovascular disease. METHODS AND RESULTS: When TGRL was labelled with fluorescent phospholipid 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), time- and dose-dependent transfer of DiI to HDL was observed upon incubations with lipoprotein lipase (LPL). The capacity of HDL to acquire DiI was decreased by -36% (p<0.001) in low HDL-C patients with acute myocardial infarction (n = 22) and by -95% (p<0.001) in low HDL-C subjects with Tangier disease (n = 7), unchanged in low HDL-C patients with Type 2 diabetes (n = 17) and in subjects with high HDL-C (n = 20), and elevated in subjects with extremely high HDL-C (+11%, p<0.05) relative to healthy normolipidemic controls. Across all the populations combined, HDL capacity to acquire DiI was directly correlated with HDL-C (r = 0.58, p<0.001). No relationship of HDL capacity to acquire DiI with both overall and cardiovascular mortality obtained from epidemiological studies for the mean HDL-C levels observed in the studied populations was obtained. CONCLUSIONS: These data indicate that the capacity of HDL to acquire phospholipid from TGRL upon LPL-mediated lipolysis is proportional to HDL-C and does not reflect cardiovascular risk in subjects widely differing in HDL-C levels.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Cardiovascular Diseases/diagnosis , Cholesterol , Heart Disease Risk Factors , Humans , Lipolysis , Lipoprotein Lipase/metabolism , Lipoproteins, HDL/metabolism , Phospholipids , Risk Factors , Triglycerides
8.
Front Plant Sci ; 11: 602939, 2020.
Article in English | MEDLINE | ID: mdl-33424902

ABSTRACT

Accumulation of proline is a widespread plant response to a broad range of environmental stress conditions including salt and osmotic stress. Proline accumulation is achieved mainly by upregulation of proline biosynthesis in the cytosol and by inhibition of proline degradation in mitochondria. Changes in gene expression or activity levels of the two enzymes catalyzing the first reactions in these two pathways, namely pyrroline-5-carboxylate (P5C) synthetase and proline dehydrogenase (ProDH), are often used to assess the stress response of plants. The difficulty to isolate ProDH in active form has led several researchers to erroneously report proline-dependent NAD+ reduction at pH 10 as ProDH activity. We demonstrate that this activity is due to P5C reductase (P5CR), the second and last enzyme in proline biosynthesis, which works in the reverse direction at unphysiologically high pH. ProDH does not use NAD+ as electron acceptor but can be assayed with the artificial electron acceptor 2,6-dichlorophenolindophenol (DCPIP) after detergent-mediated solubilization or enrichment of mitochondria. Seemingly counter-intuitive results from previous publications can be explained in this way and our data highlight the importance of appropriate and specific assays for the detection of ProDH and P5CR activities in crude plant extracts.

9.
Eur J Prev Cardiol ; 27(15): 1606-1616, 2020 10.
Article in English | MEDLINE | ID: mdl-31840535

ABSTRACT

BACKGROUND: Low concentrations of high-density lipoprotein cholesterol (HDL-C) represent a well-established cardiovascular risk factor. Paradoxically, extremely high HDL-C levels are equally associated with elevated cardiovascular risk, resulting in the U-shape relationship of HDL-C with cardiovascular disease. Mechanisms underlying this association are presently unknown. We hypothesised that the capacity of high-density lipoprotein (HDL) to acquire free cholesterol upon triglyceride-rich lipoprotein (TGRL) lipolysis by lipoprotein lipase underlies the non-linear relationship between HDL-C and cardiovascular risk. METHODS: To assess our hypothesis, we developed a novel assay to evaluate the capacity of HDL to acquire free cholesterol (as fluorescent TopFluor® cholesterol) from TGRL upon in vitro lipolysis by lipoprotein lipase. RESULTS: When the assay was applied to several populations markedly differing in plasma HDL-C levels, transfer of free cholesterol was significantly decreased in low HDL-C patients with acute myocardial infarction (-45%) and type 2 diabetes (-25%), and in subjects with extremely high HDL-C of >2.59 mmol/L (>100 mg/dL) (-20%) versus healthy normolipidaemic controls. When these data were combined and plotted against HDL-C concentrations, an inverse U-shape relationship was observed. Consistent with these findings, animal studies revealed that the capacity of HDL to acquire cholesterol upon lipolysis was reduced in low HDL-C apolipoprotein A-I knock-out mice and was negatively correlated with aortic accumulation of [3H]-cholesterol after oral gavage, attesting this functional characteristic as a negative metric of postprandial atherosclerosis. CONCLUSIONS: Free cholesterol transfer to HDL upon TGRL lipolysis may underlie the U-shape relationship between HDL-C and cardiovascular disease, linking HDL-C to triglyceride metabolism and atherosclerosis.


Subject(s)
Aorta, Thoracic/metabolism , Cardiovascular Diseases/metabolism , Cholesterol Ester Transfer Proteins/metabolism , Lipolysis/physiology , Lipoproteins, HDL/metabolism , Triglycerides/metabolism , Animals , Biomarkers/metabolism , Disease Models, Animal , Female , Humans , Lipoprotein Lipase/metabolism , Male , Mice , Mice, Transgenic , Postprandial Period
10.
J Exp Bot ; 70(21): 6203-6214, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31504781

ABSTRACT

Leaf senescence is a form of developmentally programmed cell death that allows the remobilization of nutrients and cellular materials from leaves to sink tissues and organs. Among the catabolic reactions that occur upon senescence, little is known about the role of proline catabolism. In this study, the involvement in dark-induced senescence of proline dehydrogenases (ProDHs), which catalyse the first and rate-limiting step of proline oxidation in mitochondria, was investigated using prodh single- and double-mutants with the help of biochemical, proteomic, and metabolomic approaches. The presence of ProDH2 in mitochondria was confirmed by mass spectrometry and immunogold labelling in dark-induced leaves of Arabidopsis. The prodh1 prodh2 mutant exhibited enhanced levels of most tricarboxylic acid cycle intermediates and free amino acids, demonstrating a role of ProDH in mitochondrial metabolism. We also found evidence of the involvement and the importance of ProDH in respiration, with proline as an alternative substrate, and in remobilization of proline during senescence to generate glutamate and energy that can then be exported to sink tissues and organs.


Subject(s)
Arabidopsis/metabolism , Darkness , Mitochondria/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Proline/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Respiration , Chlorophyll/metabolism , Gene Expression Regulation, Plant , Metabolome , Mitochondria/ultrastructure , Oxidation-Reduction , Oxygen Consumption
11.
Plant J ; 100(4): 677-692, 2019 11.
Article in English | MEDLINE | ID: mdl-31325184

ABSTRACT

The accurate control of dormancy release and germination is critical for successful plantlet establishment. Investigations in cereals hypothesized a crucial role for specific MAP kinase (MPK) pathways in promoting dormancy release, although the identity of the MPK involved and the downstream events remain unclear. In this work, we characterized mutants for Arabidopsis thaliana MAP kinase 8 (MPK8). Mpk8 seeds presented a deeper dormancy than wild-type (WT) at harvest that was less efficiently alleviated by after-ripening and gibberellic acid treatment. We identified Teosinte Branched1/Cycloidea/Proliferating cell factor 14 (TCP14), a transcription factor regulating germination, as a partner of MPK8. Mpk8 tcp14 double-mutant seeds presented a deeper dormancy at harvest than WT and mpk8, but similar to that of tcp14 seeds. MPK8 interacted with TCP14 in the nucleus in vivo and phosphorylated TCP14 in vitro. Furthermore, MPK8 enhanced TCP14 transcriptional activity when co-expressed in tobacco leaves. Nevertheless, the stimulation of TCP14 transcriptional activity by MPK8 could occur independently of TCP14 phosphorylation. The comparison of WT, mpk8 and tcp14 transcriptomes evidenced that whereas no effect was observed in dry seeds, mpk8 and tcp14 mutants presented dramatic transcriptomic alterations after imbibition with a sustained expression of genes related to seed maturation. Moreover, both mutants exhibited repression of genes involved in cell wall remodeling and cell cycle G1/S transition. As a whole, this study unraveled a role for MPK8 in promoting seed germination, and suggested that its interaction with TCP14 was critical for regulating key processes required for germination completion.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Germination/physiology , Mitogen-Activated Protein Kinases/metabolism , Transcription Factors/metabolism , Abscisic Acid/pharmacology , Arabidopsis Proteins/genetics , Cell Wall/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant , Gibberellins/pharmacology , Mitogen-Activated Protein Kinases/genetics , Mutation , Phosphorylation , Plant Dormancy/physiology , Plants, Genetically Modified , Seeds/drug effects , Seeds/physiology , Nicotiana/genetics , Transcription Factors/genetics
12.
Biochem J ; 473(17): 2623-34, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27303048

ABSTRACT

Proline accumulates in many plant species in response to environmental stresses. Upon relief from stress, proline is rapidly oxidized in mitochondria by proline dehydrogenase (ProDH) and then by pyrroline-5-carboxylate dehydrogenase (P5CDH). Two ProDH genes have been identified in the genome of the model plant Arabidopsis thaliana To gain a better understanding of ProDH1 functions in mitochondria, proteomic analysis was performed. ProDH1 polypeptides were identified in Arabidopsis mitochondria by immunoblotting gels after 2D blue native (BN)-SDS/PAGE, probing them with an anti-ProDH antibody and analysing protein spots by MS. The 2D gels showed that ProDH1 forms part of a low-molecular-mass (70-140 kDa) complex in the mitochondrial membrane. To evaluate the contribution of each isoform to proline oxidation, mitochondria were isolated from wild-type (WT) and prodh1, prodh2, prodh1prodh2 and p5cdh mutants. ProDH activity was high for genotypes in which ProDH, most likely ProDH1, was strongly induced by proline. Respiratory measurements indicate that ProDH1 has a role in oxidizing excess proline and transferring electrons to the respiratory chain.


Subject(s)
Arabidopsis/metabolism , Electron Transport , Mitochondria/metabolism , Proline Oxidase/metabolism , Proline/metabolism , Proteome , Arabidopsis/enzymology , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry
13.
Planta ; 243(4): 909-23, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26721646

ABSTRACT

MAIN CONCLUSION: Arabidopsis PHS1, initially known as an actor of cytoskeleton organization, is a positive regulator of flowering in the photoperiodic and autonomous pathways by modulating both CO and FLC mRNA levels. Protein phosphorylation and dephosphorylation is a major type of post-translational modification, controlling many biological processes. In Arabidopsis thaliana, five genes encoding MAPK phosphatases (MKP)-like proteins have been identified. Among them, PROPYZAMIDE HYPERSENSITIVE 1 (PHS1) encoding a dual-specificity protein tyrosine phosphatase (DsPTP) has been shown to be involved in microtubule organization, germination and ABA-regulated stomatal opening. Here, we demonstrate that PHS1 also regulates flowering under long-day and short-day conditions. Using physiological, genetic and molecular approaches, we have shown that the late flowering phenotype of the knock-out phs1-5 mutant is linked to a higher expression of FLOWERING LOCUS C (FLC). In contrast, a decline of both CONSTANS (CO) and FLOWERING LOCUS T (FT) expression is observed in the knock-out phs1-5 mutant, especially at the end of the light period under long-day conditions when the induction of flowering occurs. We show that this partial loss of sensitivity to photoperiodic induction is independent of FLC. Our results thus indicate that PHS1 plays a dual role in flowering, in the photoperiodic and autonomous pathways, by modulating both CO and FLC mRNA levels. Our work reveals a novel actor in the complex network of the flowering regulation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Flowers/physiology , Protein Tyrosine Phosphatases/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Mutation , Photoperiod , Plants, Genetically Modified , Protein Tyrosine Phosphatases/genetics , RNA Processing, Post-Transcriptional , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Mol Biosyst ; 9(9): 2282-95, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23760157

ABSTRACT

TCPs are plant specific transcription factors with non-canonical basic helix-loop-helix domains. While Arabidopsis thaliana has 24 TCPs involved in cell proliferation and differentiation, their mode of action has not been fully elucidated. Using bioinformatic tools, we demonstrate that TCP transcription factors belong to the intrinsically disordered proteins (IDP) family and that disorder is higher in class I TCPs than in class II TCPs. In particular, using bioinformatic and biochemical approaches, we have characterized TCP8, a class I TCP. TCP8 exhibits three intrinsically disordered regions (IDR) made of more than 50 consecutive residues, in which phosphorylable Ser residues are mainly clustered. Phosphorylation of Ser-211 that belongs to the central IDR was confirmed by mass spectrometry. Yeast two-hybrid assays also showed that the C-terminal IDR corresponds to a transactivation domain. Moreover, biochemical experiments demonstrated that TCP8 tends to oligomerize in dimers, trimers and higher-order multimers. Bimolecular fluorescence complementation (BiFC) experiments carried out on a truncated form of TCP8 lacking the C-terminal IDR indicated that it is effectively required for the pronounced self-assembly of TCP8. These data were reinforced by the prediction of a coiled coil domain in this IDR. The C-terminal IDR acts thus as an oligomerization domain and also a transactivation domain. Moreover, many Molecular Recognition Features (MoRFs) were predicted, indicating that TCP8 could interact with several partners to fulfill a fine regulation of transcription in response to various stimuli.


Subject(s)
Arabidopsis Proteins/chemistry , Intrinsically Disordered Proteins/chemistry , Protein Interaction Domains and Motifs , Transcription Factors/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Arabidopsis , Arabidopsis Proteins/metabolism , Intrinsically Disordered Proteins/metabolism , Molecular Sequence Data , Molecular Weight , Phosphorylation , Protein Binding , Protein Multimerization , Transcription Factors/metabolism
15.
FEBS J ; 275(6): 1248-59, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18266760

ABSTRACT

Possible binding proteins of CP12 in a green alga, Chlamydomonas reinhardtii, were investigated. We covalently immobilized CP12 on a resin and then used it to trap CP12 partners. Thus, we found an association between CP12 and phosphoribulokinase (EC 2.7.1.19), glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) and aldolase. Immunoprecipitation with purified CP12 antibodies supported these data. The dissociation constant between CP12 and fructose 1,6-bisphosphate (EC 4.1.2.13) aldolase was measured by surface plasmon resonance and is equal to 0.48 +/- 0.05 mum and thus corroborated an interaction between CP12 and aldolase. However, the association is even stronger between aldolase and the phosphoribulokinase/glyceraldehyde 3-phosphate dehydrogenase/CP12 complex and the dissociation constant between them is equal to 55+/-5 nm. Moreover, owing to the fact that aldolase has been poorly studied in C. reinhardtii, we purified it and analyzed its kinetic properties. The enzyme displayed Michaelis-Menten kinetics with fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate, with a catalytic constant equal to 35 +/- 1 s(-1) and 4 +/- 0.1 s(-1), respectively. The K(m) value for fructose 1,6-bisphosphate was equal to 0.16 +/- 0.02 mm and 0.046 +/- 0.005 mm for sedoheptulose 1,7-bisphosphate. The catalytic efficiency of aldolase was thus 219 +/- 31 s(-1).mm(-1) with fructose 1,6-bisphosphate and 87 +/- 9 s(-1).mm(-1) with sedoheptulose 1,7-bisphosphate. In the presence of the complex, this parameter for fructose 1,6-bisphosphate increased to 310 +/- 23 s(-1).mm(-1), whereas no change was observed with sedoheptulose 1,7-bisphosphate. The condensation reaction of aldolase to form fructose 1,6-bisphosphate was also investigated but no effect of CP12 or the complex on this reaction was observed.


Subject(s)
Algal Proteins/metabolism , Chlamydomonas reinhardtii/enzymology , Fructose-Bisphosphate Aldolase/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Algal Proteins/chemistry , Animals , Fructose-Bisphosphate Aldolase/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Immunoprecipitation , Kinetics , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Protein Binding
16.
FEBS J ; 273(14): 3358-69, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16803460

ABSTRACT

The 8.5 kDa chloroplast protein CP12 is essential for assembly of the phosphoribulokinase/glyceraldehyde-3-phosphate dehydrogenase (GAPDH) complex from Chlamydomonas reinhardtii. After reduction of this complex with thioredoxin, phosphoribulokinase is released but CP12 remains tightly associated with GAPDH and downregulates its NADPH-dependent activity. We show that only incubation with reduced thioredoxin and the GAPDH substrate 1,3-bisphosphoglycerate leads to dissociation of the GAPDH/CP12 complex. Consequently, a significant twofold increase in the NADPH-dependent activity of GAPDH was observed. 1,3-Bisphosphoglycerate or reduced thioredoxin alone weaken the association, causing a smaller increase in GAPDH activity. CP12 thus behaves as a negative regulator of GAPDH activity. A mutant lacking the C-terminal disulfide bridge is unable to interact with GAPDH, whereas absence of the N-terminal disulfide bridge does not prevent the association with GAPDH. Trypsin-protection experiments indicated that GAPDH may be also bound to the central alpha-helix of CP12 which includes residues at position 36 (D) and 39 (E). Mutants of CP12 (D36A, E39A and E39K) but not D36K, reconstituted the GAPDH/CP12 complex. Although the dissociation constants measured by surface plasmon resonance were 2.5-75-fold higher with these mutants than with wild-type CP12 and GAPDH, they remained low. For the D36K mutation, we calculated a 7 kcal.mol(-1) destabilizing effect, which may correspond to loss of the stabilizing effect of an ionic bond for the interaction between GAPDH and CP12. It thus suggests that electrostatic forces are responsible for the interaction between GAPDH and CP12.


Subject(s)
Chlamydomonas reinhardtii/chemistry , Chlamydomonas reinhardtii/enzymology , Chloroplasts/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Plant Proteins/metabolism , Animals , Binding Sites , Cysteine/chemistry , Diphosphoglyceric Acids/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/analysis , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , In Vitro Techniques , Kinetics , Models, Molecular , Molecular Weight , Mutation , Oxidation-Reduction , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Phosphotransferases (Alcohol Group Acceptor) , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/isolation & purification , Protein Binding , Protein Structure, Secondary , Protein Subunits/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Static Electricity , Surface Plasmon Resonance , Thioredoxins/pharmacology , Trypsin/pharmacology
17.
Eur J Biochem ; 271(23-24): 4737-44, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15606760

ABSTRACT

The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the chloroplast of Chlamydomonas reinhardtii is part of a complex that also includes phosphoribulokinase (PRK) and CP12. We identified two residues of GAPDH involved in protein-protein interactions in this complex, by changing residues K128 and R197 into A or E. K128A/E mutants had a Km for NADH that was twice that of the wild type and a lower catalytic constant, whatever the cofactor. The kinetics of the mutant R197A were similar to those of the wild type, while the R197E mutant had a lower catalytic constant with NADPH. Only small structural changes near the mutation may have caused these differences, since circular dichroism and fluorescence spectra were similar to those of wild-type GAPDH. Molecular modelling of the mutants led to the same conclusion. All mutants, except R197E, reconstituted the GAPDH-CP12 subcomplex. Although the dissociation constants measured by surface plasmon resonance were 10-70-fold higher with the mutants than with wild-type GAPDH and CP12, they remained low. For the R197E mutation, we calculated a 4 kcal/mol destabilizing effect, which may correspond to the loss of the stabilizing effect of a salt bridge for the interaction between GAPDH and CP12. All the mutant GAPDH-CP12 subcomplexes failed to interact with PRK and to form the native complex. The absence of kinetic changes of all the mutant GAPDH-CP12 subcomplexes, compared to wild-type GAPDH-CP12, suggests that mutants do not undergo the conformation change essential for PRK binding.


Subject(s)
Carbon Dioxide/metabolism , Chlamydomonas reinhardtii/enzymology , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Amino Acid Sequence , Animals , Catalysis , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sequence Homology, Amino Acid
18.
J Exp Bot ; 55(400): 1245-54, 2004 May.
Article in English | MEDLINE | ID: mdl-15047759

ABSTRACT

Protein-protein interactions are involved in many metabolic pathways. This review will focus on the role of such associations in CO2 assimilation (Benson-Calvin cycle) and especially on the involvement of a GAPDH/CP12/PRK complex which has been identified in many photosynthetic organisms and may have an important role in the regulation of CO2 assimilation. The emergence of new kinetic and regulatory properties as a consequence of protein-protein interactions will be addressed as well as some of the questions raised by the existence of these supramolecular complexes such as composition, function, and assembly pathways. The presence and role of small intrinsically unstructured proteins like the 8.5 kDa protein CP12, involved in the regulation and/or assembly of these complexes will be discussed.


Subject(s)
Carbon Dioxide/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plant Proteins/metabolism , Animals , Chlamydomonas reinhardtii/metabolism , Kinetics , Models, Molecular , Oxidation-Reduction , Photosynthesis , Plants/metabolism , Protein Interaction Mapping , Ribulose-Bisphosphate Carboxylase/metabolism
19.
Biochemistry ; 42(27): 8163-70, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12846565

ABSTRACT

CP12 is an 8.5-kDa nuclear-encoded chloroplast protein, isolated from higher plants. It forms part of a core complex of two dimers of phosphoribulokinase (PRK), two tetramers of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and CP12. The role of CP12 in this complex assembly has not been determined. To address this question, we cloned a cDNA encoding the mature CP12 from the green alga Chlamydomonas reinhardtii and expressed it in Escherichia coli. Sequence alignments show that it is very similar to other CP12s, with four conserved cysteine residues forming two disulfide bridges in the oxidized CP12. On the basis of reconstitution assays and surface plasmon resonance binding studies, we show that oxidized, but not reduced, CP12 acts as a linker in the assembly of the complex, and we propose a model in which CP12 associates with GAPDH, causing its conformation to change. This GAPDH/CP12 complex binds PRK to form a half-complex (one unit). This unit probably dimerizes due partially to interactions between the enzymes of each unit. Reduced CP12 being unable to reconstitute the complex, we studied the structures of oxidized and reduced CP12 by NMR and circular dichroism to determine whether reduction induced structural transitions. Oxidized CP12 is mainly composed of alpha helix and coil segments, and is extremely flexible, while reduced CP12 is mainly unstructured. Remarkably, CP12 has similar physicochemical properties to those of "intrinsically unstructured proteins" that are also involved in regulating macromolecular complexes, or in their assembly. CP12s are thus one of the few protein families of intrinsically unstructured proteins specific to plants.


Subject(s)
Chlamydomonas reinhardtii/chemistry , Plant Proteins/chemistry , Amino Acid Sequence , Animals , Base Sequence , Circular Dichroism , DNA Primers , Disulfides/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Molecular Sequence Data , Oxidation-Reduction , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Homology, Amino Acid , Surface Plasmon Resonance
20.
J Biol Chem ; 278(14): 12078-84, 2003 Apr 04.
Article in English | MEDLINE | ID: mdl-12556449

ABSTRACT

The activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) embedded in the phosphoribulokinase (PRK).GAPDH.CP12 complex was increased 2-3-fold by reducing agents. This occurred by interaction with PRK as the cysteinyl sulfhydryls (4 SH/subunit) of GAPDH within the complex were unchanged whatever the redox state of the complex. But isolated GAPDH was not activated. Alkylation plus mass spectrometry also showed that PRK had one disulfide bridge and three SH groups per monomer in the active oxidized complex. Reduction disrupted this disulfide bridge to give 2 more SH groups and a much more active enzyme. We assessed the kinetics and dynamics of the interactions between PRK and GAPDH/CP12 using biosensors to measure complex formation in real time. The apparent equilibrium binding constant for GAPDH/CP12 and PRK was 14 +/- 1.6 nm for oxidized PRK and 62 +/- 10 nm for reduced PRK. These interactions were neither pH- nor temperature-dependent. Thus, the dynamics of PRK.GAPDH.CP12 complex formation and GAPDH activity are modulated by the redox state of PRK.


Subject(s)
Chloroplasts/enzymology , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Biosensing Techniques , Chlamydomonas reinhardtii , Oxidants/pharmacology , Oxidation-Reduction , Plant Proteins/metabolism , Sulfhydryl Compounds/metabolism , Surface Plasmon Resonance , Titrimetry
SELECTION OF CITATIONS
SEARCH DETAIL