Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Publication year range
2.
Children (Basel) ; 10(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38002855

ABSTRACT

Migraine has a relevant impact on pediatric health. Non-pharmacological modalities for its management are urgently needed. This study assessed the safety, feasibility, acceptance, and efficacy of repetitive neuromuscular magnetic stimulation (rNMS) in pediatric migraine. A total of 13 patients with migraine, ≥6 headache days during baseline, and ≥1 myofascial trigger point in the upper trapezius muscles (UTM) received six rNMS sessions within 3 weeks. Headache frequency, intensity, and medication intake were monitored using headache calendars; headache-related impairment and quality of life were measured using PedMIDAS and KINDL questionnaires. Muscular involvement was assessed using pressure pain thresholds (PPT). Adherence yielded 100%. In 82% of all rNMS sessions, no side effects occurred. All participants would recommend rNMS and would repeat it. Headache frequency, medication intake, and PedMIDAS scores decreased from baseline to follow-up (FU), trending towards statistical significance (p = 0.089; p = 0.081, p = 0.055). A total of 7 patients were classified as responders, with a ≥25% relative reduction in headache frequency. PPT above the UTM significantly increased from pre- to post-assessment, which sustained until FU (p = 0.015 and 0.026, respectively). rNMS was safe, feasible, well-accepted, and beneficial on the muscular level. The potential to reduce headache-related symptoms together with PPT changes of the targeted UTM may underscore the interplay of peripheral and central mechanisms conceptualized within the trigemino-cervical complex.

3.
Front Neurol ; 13: 919623, 2022.
Article in English | MEDLINE | ID: mdl-35989916

ABSTRACT

Background: Repetitive neuromuscular magnetic stimulation (rNMS) of the trapezius muscles showed beneficial effects in preventing episodic migraine. However, clinical characteristics that predict a favorable response to rNMS are unknown. The objective of this analysis is to identify such predictors. Methods: Thirty participants with a diagnosis of episodic migraine (mean age: 24.8 ± 4.0 years, 29 females), who were prospectively enrolled in two non-sham-controlled studies evaluating the effects of rNMS were analyzed. In these studies, the interventional stimulation of the bilateral trapezius muscles was applied in six sessions and distributed over two consecutive weeks. Baseline and follow-up assessments included the continuous documentation of a headache calendar over 30 days before and after the stimulation period, the Migraine Disability Assessment Score (MIDAS) questionnaire (before stimulation and 90 days after stimulation), and measurements of pain pressure thresholds (PPTs) above the trapezius muscles by algometry (before and after each stimulation session). Participants were classified as responders based on a ≥25% reduction in the variable of interest (headache frequency, headache intensity, days with analgesic intake, MIDAS score, left-sided PPTs, right-sided PPTs). Post-hoc univariate and multivariate binary logistic regression analyses were performed. Results: Lower headache frequency (P = 0.016) and intensity at baseline (P = 0.015) and a migraine diagnosis without a concurrent tension-type headache component (P = 0.011) were significantly related to a ≥25% reduction in headache frequency. Higher headache frequency (P = 0.052) and intensity at baseline (P = 0.014) were significantly associated with a ≥25% reduction in monthly days with analgesic intake. Lower right-sided PPTs at baseline were significantly related to a ≥25% increase in right-sided PPTs (P = 0.015) and left-sided PPTs (P =0.030). Performance of rNMS with higher stimulation intensities was significantly associated with a ≥25% reduction in headache intensity (P = 0.046). Conclusions: Clinical headache characteristics at baseline, the level of muscular hyperalgesia, and stimulation intensity may inform about how well an individual patient responds to rNMS. These factors may allow an early identification of patients that would most likely benefit from rNMS.

4.
Brain Sci ; 12(7)2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35884738

ABSTRACT

Repetitive neuromuscular magnetic stimulation (rNMS) for pediatric headache disorders is feasible, safe, and alleviates headache symptoms. This study assesses muscular effects and factors affecting response to rNMS. A retrospective chart review included children with headaches receiving six rNMS sessions targeting the upper trapezius muscles. Pressure pain thresholds (PPT) were measured before and after rNMS, and at 3-month follow-up (FU). Mean headache frequency, duration, and intensity within the last 3 months were documented. In 20 patients (14.1 ± 2.7 years), PPT significantly increased from pre- to post-treatment (p < 0.001) sustaining until FU. PPT changes significantly differed between primary headache and post-traumatic headache (PTH) (p = 0.019−0.026). Change in headache frequency was significantly higher in patients with than without neck pain (p = 0.032). A total of 60% of patients with neck pain responded to rNMS (≥25%), while 20% of patients without neck pain responded (p = 0.048). 60% of patients receiving rNMS twice a week were responders, while 33% of patients receiving rNMS less or more frequently responded to treatment, respectively. Alleviation of muscular hyperalgesia was demonstrated sustaining for 3 months, which was emphasized in PTH. The rNMS sessions may positively modulate headache symptoms regardless of headache diagnosis. Patients with neck pain profit explicitly well. Two rNMS sessions per week led to the highest reduction in headache frequency.

5.
Eur J Paediatr Neurol ; 39: 40-48, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35660103

ABSTRACT

INTRODUCTION: Repetitive neuromuscular magnetic stimulation (rNMS) was previously applied in adult patients with episodic migraine, showing beneficial effects on headache characteristics, high safety, and convincing satisfaction. This study aims to assess rNMS as a personalized intervention in pediatric headache. METHODS: Retrospective chart review including patients with migraine, TTH, mixed type headache, or PTH, who had received at least one test rNMS session targeting the upper trapezius muscles (UTM). RESULTS: 33 patients (13.9 ± 2.5 years; 61% females) were included in the primary analysis, resulting in a total of 182 rNMS sessions. 43 adverse events were documented for 40 of those sessions (22%). Most common side effects were tingling (32.6%), muscle sore (25.5%), shoulder (9.3%) and back pain (9.3%). Secondly, in patients (n = 20) undergoing the intervention, headache frequency (p = 0.017) and minimum and maximum intensities (p = 0.017; p = 0.023) significantly decreased from baseline to 3-month after intervention. 11 patients (44%) were classified as ≥25% responders, with 7 patients (28%) experiencing a ≥75% reduction of headache days. After 73% of interventions, patients reported rNMS helped very well or well. A majority of patients would repeat (88.5%) and recommend rNMS (96.2%) to other patients. CONCLUSION: rNMS seems to meet the criteria of safety, feasibility, and acceptance among children and adolescents with three age-typical headache disorders. A significant reduction in headache frequency and intensity during a 3 months follow-up was documented. Larger, prospective, randomized, sham-controlled studies are urgently needed to confirm if rNMS may become a new valuable non-invasive, non-pharmacological treatment option for pediatric headache disorders.


Subject(s)
Headache Disorders , Migraine Disorders , Adolescent , Adult , Child , Female , Headache/therapy , Humans , Magnetic Phenomena , Male , Migraine Disorders/therapy , Prospective Studies , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL