Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20717, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001315

ABSTRACT

In reference to gene annotation, more than half of the tRNA species synthesized by Mycobacterium tuberculosis require the enzymatic addition of the cytosine-cytosine-adenine (CCA) tail, which is indispensable for amino acid charging and tRNA functionality. It makes the mycobacterial CCA-adding enzyme essential for survival of the bacterium and a potential target for novel pipelines in drug discovery avenues. Here, we described the rv3907c gene product, originally annotated as poly(A)polymerase (rv3907c, PcnA) as a functional CCA-adding enzyme (CCAMtb) essential for viability of M. tuberculosis. The depletion of the enzyme affected tRNAs maturation, inhibited bacilli growth, and resulted in abundant accumulation of polyadenylated RNAs. We determined the enzymatic activities displayed by the mycobacterial CCAMtb in vitro and studied the effects of inhibiting of its transcription in bacterial cells. We are the first to properly confirm the existence of RNA polyadenylation in mycobacteria, a previously controversial phenomenon, which we found promoted upon CCA-adding enzyme downexpression.


Subject(s)
Mycobacterium tuberculosis , Polyadenylation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Adenine , Cytosine , Nucleic Acid Conformation , RNA Nucleotidyltransferases/genetics , RNA, Transfer/metabolism
2.
Front Cell Infect Microbiol ; 12: 909507, 2022.
Article in English | MEDLINE | ID: mdl-35837472

ABSTRACT

Two-component signal transduction systems enable mycobacterial cells to quickly adapt and adequately respond to adverse environmental conditions encountered at various stages of host infection. We attempted to determine the role of the Rv3143 "orphan" response regulator in the physiology of Mycobacterium tuberculosis and its orthologue Msmeg_2064 in Mycobacterium smegmatis. We identified the Rv3143 protein as an interaction partner for NuoD, a member of the type I NADH dehydrogenase complex involved in oxidative phosphorylation. The mutants Δrv3143 and Δmsmeg_2064 were engineered in M. tuberculosis and M. smegmatis cells, respectively. The Δmsmeg_2064 strain exhibited a significant reduction in growth and viability in the presence of reactive nitrogen species. The Rv3143-deficient strain was sensitive to valinomycin, which is known to reduce the electrochemical potential of the cell and overexpressed genes required for nitrate respiration. An increased level of reduction of the 2,3,5-triphenyltetrazolium chloride (TTC) electron acceptor in Δrv3143 and Δmsmeg_2064 cells was also evident. The silencing of ndh expression using CRISPRi/dCas9 affected cell survival under limited oxygen conditions. Oxygen consumption during entry to hypoxia was most severely affected in the double-mutant Δmsmeg_2064 ndhCRISPRi/dCas9 . We propose that the regulatory protein Rv3143 is a component of the Nuo complex and modulates its activity.


Subject(s)
Mycobacterium tuberculosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mycobacterium smegmatis , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Oxygen Consumption
3.
Genes (Basel) ; 12(4)2021 04 09.
Article in English | MEDLINE | ID: mdl-33918798

ABSTRACT

The mycobacterial nonhomologous end-joining pathway (NHEJ) involved in double-strand break (DSB) repair consists of the multifunctional ATP-dependent ligase LigD and the DNA bridging protein Ku. The other ATP-dependent ligases LigC and AEP-primase PrimC are considered as backup in this process. The engagement of LigD, LigC, and PrimC in the base excision repair (BER) process in mycobacteria has also been postulated. Here, we evaluated the sensitivity of Mycolicibacterium smegmatis mutants defective in the synthesis of Ku, Ku-LigD, and LigC1-LigC2-PrimC, as well as mutants deprived of all these proteins to oxidative and nitrosative stresses, with the most prominent effect observed in mutants defective in the synthesis of Ku protein. Mutants defective in the synthesis of LigD or PrimC/LigC presented a lower frequency of spontaneous mutations than the wild-type strain or the strain defective in the synthesis of Ku protein. As identified by whole-genome sequencing, the most frequent substitutions in all investigated strains were T→G and A→C. Double substitutions, as well as insertions of T or CG, were exclusively identified in the strains carrying functional Ku and LigD proteins. On the other hand, the inactivation of Ku/LigD increased the efficiency of the deletion of G in the mutant strain.


Subject(s)
Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , DNA Primase/metabolism , Ligases/metabolism , Mutation Rate , Mycobacterium/genetics , Oxidative Stress , Bacterial Proteins/genetics , DNA Primase/genetics , Ligases/genetics , Mycobacterium/growth & development , Mycobacterium/metabolism
4.
Front Microbiol ; 11: 618168, 2020.
Article in English | MEDLINE | ID: mdl-33603720

ABSTRACT

Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. According to the WHO, the disease is one of the top 10 causes of death of people worldwide. Mycobacterium tuberculosis is an intracellular pathogen with an unusually thick, waxy cell wall and a complex life cycle. These factors, combined with M. tuberculosis ability to enter prolonged periods of latency, make the bacterium very difficult to eradicate. The standard treatment of TB requires 6-20months, depending on the drug susceptibility of the infecting strain. The need to take cocktails of antibiotics to treat tuberculosis effectively and the emergence of drug-resistant strains prompts the need to search for new antitubercular compounds. This review provides a perspective on how modern -omic technologies facilitate the drug discovery process for tuberculosis treatment. We discuss how methods of DNA and RNA sequencing, proteomics, and genetic manipulation of organisms increase our understanding of mechanisms of action of antibiotics and allow the evaluation of drugs. We explore the utility of mathematical modeling and modern computational analysis for the drug discovery process. Finally, we summarize how -omic technologies contribute to our understanding of the emergence of drug resistance.

SELECTION OF CITATIONS
SEARCH DETAIL