Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 65(1): 25, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38193758

ABSTRACT

Purpose: Indocyanine green (ICG) is an albumin and lipoprotein binding dye absorbing in the far red used in angiography to visualize choroidal vessels (ICG angiography [ICGA]). To guide interpretation, ICG transport in the choroid, RPE, and retina of rats was studied. Methods: Two conditions were used: RPE/choroid organoculture, incubated for 45 minutes in DMEM medium, 1% fetal bovine serum containing 0.25 mg/mL ICG and RPE/choroid and neural retina flat-mounts at 1 and 6 hours after intravenous ICG injection. Early and late sequences of ICGA were recorded until 6 hours. Ultra-deep red confocal microscope was used to localize ICG in flat-mounts and immunohistochemistry was performed for caveolin-1, tryptase (mast cell marker), and tubulin ß3 (a nerve marker). Results: In the organoculture, ICG penetrated homogeneously in the cytoplasm and stained the membranes of the RPE. At 1 hour after intravenous injection, ICG appeared in fine granules in RPE, partly labeled with caveolin-1 and decreasing at 6 hours. At 1 hour and 6 hours, ICG was found in the retinal vessels, faintly in the inner retina, and in the photoreceptor outer segments at 6 hours. In the choroid, ICG colocalized with mast cells, immunostained with tryptase, and accumulated along the large tubulin ß3-labeled nerve bundles. The hypothesis was raised on the interpretation of late ICGA infrared photography in case of transthyretin amyloidosis with neuropathy. Conclusions: Beside being a vascular dye, ICG is transported from the vessels to the RPE toward the outer retina. It stains mast cells and large choroidal nerves. These observations could help the analysis of ICGA images.


Subject(s)
Amyloid Neuropathies, Familial , Indocyanine Green , Animals , Rats , Caveolin 1 , Tryptases , Tubulin , Angiography , Retina/diagnostic imaging , Choroid
2.
Acta Neuropathol ; 146(5): 747-766, 2023 11.
Article in English | MEDLINE | ID: mdl-37682293

ABSTRACT

Central serous chorioretinopathy (CSCR) belongs to the pachychoroid spectrum, a pathological phenotype of the choroidal vasculature, in which blood flow is under the choroidal nervous system (ChNS) regulation. The pathogenesis of CSCR is multifactorial, with the most recognised risk factor being intake of glucocorticoids, which activate both the gluco- and the mineralocorticoid (MR) receptors. As MR over-activation is pathogenic in the retina and choroid, it could mediate the pathogenic effects of glucocorticoids in CSCR. But the role of MR signalling in pachychoroid is unknown and whether it affects the ChNS has not been explored. Using anatomo-neurochemical characterisation of the ChNS in rodents and humans, we discovered that beside innervation of arteries, choroidal veins and choriocapillaris are also innervated, suggesting that the entire choroidal vasculature is under neural control. The numerous synapses together with calcitonin gene-related peptide (CGRP) vesicles juxtaposed to choroidal macrophages indicate a neuro-immune crosstalk. Using ultrastructural approaches, we show that transgenic mice overexpressing human MR, display a pachychoroid-like phenotype, with signs of choroidal neuropathy including myelin abnormalities, accumulation and enlargement of mitochondria and nerves vacuolization. Transcriptomic analysis of the RPE/choroid complex in the transgenic mice reveals regulation of corticoids target genes, known to intervene in nerve pathophysiology, such as Lcn2, rdas1/dexras1, S100a8 and S100a9, rabphilin 3a (Rph3a), secretogranin (Scg2) and Kinesin Family Member 5A (Kif5a). Genes belonging to pathways related to vasculature development, hypoxia, epithelial cell apoptosis, epithelial mesenchymal transition, and inflammation, support the pachychoroid phenotype and highlight downstream molecular targets. Hypotheses on the imaging phenotype of pachychoroid in humans are put forward in the light of these new data. Our results provide evidence that MR overactivation causes a choroidal neuropathy that could explain the pachychoroid phenotype found in transgenic mice overexpressing human MR. In patients with pachychoroid and CSCR in which systemic dysautonomia has been demonstrated, MR-induced choroidal neuropathy could be the missing link between corticoids and pachychoroid.


Subject(s)
Receptors, Mineralocorticoid , Tomography, Optical Coherence , Animals , Mice , Humans , Receptors, Mineralocorticoid/genetics , Tomography, Optical Coherence/methods , Choroid/blood supply , Choroid/pathology , Adrenal Cortex Hormones , Glucocorticoids , Nervous System , Mice, Transgenic , Retrospective Studies
3.
Small Methods ; 7(11): e2300491, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37490517

ABSTRACT

The design of high-density non-volatile memories is a long-standing dream, limited by conventional storage "0" or "1" bits. An alternative paradigm exists in which regions within candidate materials can be magnetized to intermediate values between the saturation limits. In principle, this paves the way to multivalued bits, vastly increasing storage density. Single-molecule magnets, are good examples offering transitions between intramolecular quantum levels, but require ultra-low temperatures and limited relaxation time between magnetization states. It is showed here that the quasi 2D-Ising compound BaFe2 (PO4 )2 overcomes these limitations. The combination of giant magneto-crystalline anisotropy, strong ferromagnetic exchange, and strong intrinsic pinning creates remarkably narrow magnetic domain walls, collectively freezing under Tf ≈15 K. This results in a transition from a soft to a super-hard magnet (coercive force > 14 T). Any magnetization can then be printed and robustly protected from external fields with an energy barrier >9T at 2 K.

4.
Pharmaceutics ; 14(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35631584

ABSTRACT

The eye is formed by tissues and cavities that contain liquids whose compositions are highly regulated to ensure their optical properties and their immune and metabolic functions. The integrity of the ocular barriers, composed of different elements that work in a coordinated fashion, is essential to maintain the ocular homeostasis. Specialized junctions between the cells of different tissues have specific features which guarantee sealing properties and selectively control the passage of drugs from the circulation or the outside into the tissues and within the different ocular compartments. Tissues structure also constitute selective obstacles and pathways for various molecules. Specific transporters control the passage of water, ions, and macromolecules, whilst efflux pumps reject and eliminate toxins, metabolites, or drugs. Ocular barriers, thus, limit the bioavailability of gene therapy products in ocular tissues and cells depending on the route chosen for their administration. On the other hand, ocular barriers allow a real local treatment, with limited systemic side-effects. Understanding the different barriers that limit the accessibility of different types of gene therapy products to the different target cells is a prerequisite for the development of efficient gene delivery systems. This review summarizes actual knowledge on the different ocular barriers that limit the penetration and distribution of gene therapy products using different routes of administration, and it provides a general overview of various methods used to bypass the ocular barriers.

5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 2): 162-171, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35411855

ABSTRACT

BaCoX2O7 (X = As, P) are built on magnetic 1D units in which strong aperiodic undulations originate from incommensurate structural modulations with large atomic displacive amplitudes perpendicular to the chain directions, resulting in very unique multiferroic properties. High-pressure structural and vibrational properties of both compounds have been investigated by synchrotron X-ray powder diffraction and Raman spectroscopy at room temperature and combined with density functional calculations. A structural phase transition is observed at 1.8 GPa and 6.8 GPa in BaCoAs2O7 and BaCoP2O7, respectively. Sharp jumps are observed in their unit-cell volumes and in Raman mode frequencies, thus confirming the first-order nature of their phase transition. These transitions involve the disappearance of the modulation from the ambient-pressure polymorph with clear spectroscopic fingerprints, such as reduction of the number of Raman modes and change of shape on some peaks. The relation between the evolution of the Raman modes along with the structure are presented and supported by density functional theory structural relaxations.


Subject(s)
Spectrum Analysis, Raman , Vibration , Phase Transition , Powders , Spectrum Analysis, Raman/methods , X-Ray Diffraction
6.
J Pineal Res ; 71(2): e12711, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33326640

ABSTRACT

In mammals, the suprachiasmatic nuclei (SCN) constitute the main circadian clock, receiving input from the retina which allows synchronization of endogenous biological rhythms with the daily light/dark cycle. Over the year, the SCN encodes photoperiodic variations through duration of melatonin secretion, with abundant nocturnal levels in winter and lower levels in summer. Thus, light information is critical to regulate seasonal reproduction in many species and is part of the central photoperiodic integration. Since intrinsically photosensitive retinal ganglion cells (ipRGCs) are vital for circadian photoentrainment and other nonvisual functions, we studied the contribution of ipRGCs in photoperiod integration in C3H retinal degeneration 1 (rd1) mice. We assessed locomotor activity and melatonin secretion in mice exposed to short or long photoperiods. Our results showed that rd1 mice are still responsive to photoperiod variations in term of locomotor activity, melatonin secretion, and regulation of the reproductive axis. In addition, retinas of animals exposed to short photoperiod exhibit higher melanopsin labeling intensity compared with the long photoperiod condition, suggesting seasonal-dependent changes within this photoreceptive system. These results show that ipRGCs in rd1 mice can still measure photoperiod and suggest a key role of melanopsin cells in photoperiod integration and the regulation of seasonal physiology.


Subject(s)
Melatonin , Retinal Degeneration , Animals , Circadian Rhythm/physiology , Mice , Mice, Inbred C3H , Photoperiod , Suprachiasmatic Nucleus/physiology
7.
Inorg Chem ; 58(19): 12609-12617, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31503469

ABSTRACT

We have investigated two original hydrated cobalt arsenates based on Co2+ octahedral edge-sharing chains. Their different magnetocrystalline anisotropies induce different types of metamagnetic transitions: spin-flop versus spin-flip. In both compounds, a strong local anisotropy (Ising spins) is favored by the spin-orbit coupling present in the CoO6 octahedra, while ferromagnetic (FM) exchanges predominate in the chains. Co2(As2O7)·2H2O (1) orders antiferromagnetically below TN = 6.7 K. The magnetic structure is a noncollinear antiferromagnetic spin arrangement along the zigzag chains with DFT calculations implying frustrated chains and weakened anisotropy. A metamagnetic transition suggests a spin-flop process above µ0H = 3.2 T. In contrast, in BaCo2As2O8·2H2O (2) linear chains are arranged in disconnected layers, with only interchain ferromagnetic exchanges, therefore increasing its magnetocrystalline anisotropy. The magnetic structure is collinear with a magnetic easy axis that allows a spin-flop to a sharp spin-flip transition below TN = 15.1 K and above µ0H = 6.2 T.

SELECTION OF CITATIONS
SEARCH DETAIL
...