Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(16): 29694-29707, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36299138

ABSTRACT

A few tens of nanometre thick ultrathin materials may suffer from a very low absorption at their band edges. In this work, we investigate a photonic crystal (PC) made of a lowcost, transparent patterned silicon nitride (SiNx) layer, conformally covered with an ultrathin active layer (e.g., 20 nm TiO2) in view of its use in various applications such as photocatalysis. A fair estimation of the absorption enhancement, considering the volume of the active material, is calculated using RCWA. A remarkable enhancement (more than ten-folds) in absorptance in the near UV range and a very high transmittance over the visible range are observed. A detailed modal analysis of the structures-of-interest unravels the Light Trapping (LT) mechanisms and allows the derivation of key design guidelines. Optical measurements on a patterned sample provide a first proof-of-concept of such possible photonic backbone structures suitable for highly efficient depollution and artificial photosynthesis for solar fuels production.

2.
Opt Express ; 21(17): 20015-22, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-24105548

ABSTRACT

New photonic microstructures are proposed for an efficient light trapping in low index media. Cylindrical hollow cavities formed by bending a photonic crystal membrane are designed. Using numerical simulations, strong confinement of photons is demonstrated for very open resonators. The resulting strong light matter interaction can be exploited in optical devices comprising an active material embedded in a low index matrix like polymer or even gaz.

3.
Opt Express ; 19(16): 15255-64, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21934889

ABSTRACT

We propose a novel system of dual-wavelength micro-cavity based on the coupling between a photonic crystal membrane (PCM); operating at the Γ- point of the Brillouin zone, with a Fabry-Perot vertical cavity (FP). The optical coupling, which can be adjusted by the overlap between both optical modes, leads to the generation of two hybrid modes separated by a frequency difference which can be tuned using micro-opto-electromechanical structures. The proposed dual-wavelength micro-cavity is attractive for application where dual-mode behaviour is desirable as dual-lasing, frequency conversion. An analytical model, numerical (FDTD) and transfer matrix method investigations are presented.

4.
Small ; 6(9): 1060-5, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20394067

ABSTRACT

Electromechanical resonators are a key element in radio-frequency telecommunication devices and thus new resonator concepts from nanotechnology can readily find important industrial opportunities. Here, the successful experimental realization of AM, FM, and digital demodulation with suspended single-walled carbon-nanotube resonators in a field-effect transistor configuration is reported. The crucial role played by the electromechanical resonance in demodulation is clearly demonstrated. The FM technique is shown to lead to the suppression of unwanted background signals and the reduction of noise for a better detection of the mechanical motion of nanotubes. The digital data-transfer rate of standard cell-phone technology is within the reach of these devices.


Subject(s)
Cell Phone , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Oscillometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Crystallization/methods , Equipment Design , Equipment Failure Analysis , Nanotubes, Carbon/ultrastructure , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...