Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Control Release ; 341: 578-590, 2022 01.
Article in English | MEDLINE | ID: mdl-34915070

ABSTRACT

Monoclonal antibodies (mAbs) are large size molecules that have demonstrated high therapeutic potential for the treatment of cancer or autoimmune diseases. Despite some excellent results, their intravenous administration results in high plasma concentration. This triggers off-target effects and sometimes poor targeted tissue distribution. To circumvent this issue, we investigated a local controlled-delivery approach using an in situ forming depot technology. Two clinically relevant mAbs, rituximab (RTX) and daratumumab (DARA), were formulated using an injectable technology based on biodegradable PEG-PLA copolymers. The stability and controlled release features of the formulations were investigated. HPLC and mass spectrometry revealed the preservation of the protein structure. In vitro binding of formulated antibodies to their target antigens and to their cellular FcγRIIIa natural killer cell receptor was fully maintained. Furthermore, encapsulated RTX was as efficient as classical intravenous RTX treatment to inhibit the in vivo tumor growth of malignant human B cells in immunodeficient NSG mice. Finally, the intra-articular administration of the formulated mAbs yielded a sustained local release associated with a lower plasma concentration compared to the intra-articular delivery of non-encapsulated mAbs. Our results demonstrate that the utilization of this polymeric technology is a reliable alternative for the local delivery of fully functional clinically relevant mAbs.


Subject(s)
Polymers , Animals , Delayed-Action Preparations/chemistry , Mice , Polymers/chemistry
2.
bioRxiv ; 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33758842

ABSTRACT

Vaccines are critical for curtailing the COVID-19 pandemic (1, 2). In the USA, two highly protective mRNA vaccines are available: BNT162b2 from Pfizer/BioNTech and mRNA-1273 from Moderna (3, 4). These vaccines induce antibodies to the SARS-CoV-2 S-protein, including neutralizing antibodies (NAbs) predominantly directed against the Receptor Binding Domain (RBD) (1-4). Serum NAbs are induced at modest levels within ~1 week of the first dose, but their titers are strongly boosted by a second dose at 3 (BNT162b2) or 4 weeks (mRNA-1273) (3, 4). SARS-CoV-2 is most commonly transmitted nasally or orally and infects cells in the mucosae of the respiratory and to some extent also the gastrointestinal tract (5). Although serum NAbs may be a correlate of protection against COVID-19, mucosal antibodies might directly prevent or limit virus acquisition by the nasal, oral and conjunctival routes (5). Whether the mRNA vaccines induce mucosal immunity has not been studied. Here, we report that antibodies to the S-protein and its RBD are present in saliva samples from mRNA-vaccinated healthcare workers (HCW). Within 1-2 weeks after their second dose, 37/37 and 8/8 recipients of the Pfizer and Moderna vaccines, respectively, had S-protein IgG antibodies in their saliva, while IgA was detected in a substantial proportion. These observations may be relevant to vaccine-mediated protection from SARS-CoV-2 infection and disease.

3.
Mol Cancer Ther ; 17(9): 1927-1940, 2018 09.
Article in English | MEDLINE | ID: mdl-29891487

ABSTRACT

Small therapeutic proteins represent a promising novel approach to treat cancer. Nevertheless, their clinical application is often adversely impacted by their short plasma half-life. Controlled long-term delivery of small biologicals has become a challenge because of their hydrophilic properties and in some cases their limited stability. Here, an in situ forming depot-injectable polymeric system was used to deliver BiJ591, a bispecific T-cell engager (BiTE) targeting both prostate-specific membrane antigen (PSMA) and the CD3 T-cell receptor in prostate cancer. BiJ591 induced T-cell activation, prostate cancer-directed cell lysis, and tumor growth inhibition. The use of diblock (DB) and triblock (TB) biodegradable polyethylene glycol-poly(lactic acid; PEG-PLA) copolymers solubilized in tripropionin, a small-chain triglyceride, allowed maintenance of BiJ591 stability and functionality in the formed depot and controlled its release. In mice, after a single subcutaneous injection, one of the polymeric candidates, TB1/DB4, provided the most sustained release of BiJ591 for up to 21 days. Moreover, the use of BiJ591-TB1/DB4 formulation in prostate cancer xenograft models showed significant therapeutic activity in both low and high PSMA-expressing tumors, whereas daily intravenous administration of BiJ591 was less efficient. Collectively, these data provide new insights into the development of controlled delivery of small therapeutic proteins in cancer. Mol Cancer Ther; 17(9); 1927-40. ©2018 AACR.


Subject(s)
Antibodies, Bispecific/pharmacology , Antineoplastic Agents/pharmacology , Drug Delivery Systems/methods , Polymers/chemistry , Prostatic Neoplasms/drug therapy , Xenograft Model Antitumor Assays/methods , Animals , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/immunology , Antigens, Surface/immunology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , CD3 Complex/immunology , Cell Line, Tumor , Drug Liberation , Glutamate Carboxypeptidase II/immunology , Humans , Male , Mice, SCID , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Survival Analysis , Tumor Burden/drug effects
4.
Clin Cancer Res ; 23(11): 2806-2816, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-27923843

ABSTRACT

Purpose: AXL receptor tyrosine kinase has been described as a relevant molecular marker and a key player in invasiveness, especially in triple-negative breast cancer (TNBC).Experimental Design: We evaluate the antitumor efficacy of the anti-AXL monoclonal antibody 20G7-D9 in several TNBC cell xenografts or patient-derived xenograft (PDX) models and decipher the underlying mechanisms. In a dataset of 254 basal-like breast cancer samples, genes correlated with AXL expression are enriched in EMT, migration, and invasion signaling pathways.Results: Treatment with 20G7-D9 inhibited tumor growth and bone metastasis formation in AXL-positive TNBC cell xenografts or PDX, but not in AXL-negative PDX, highlighting AXL role in cancer growth and invasion. In vitro stimulation of AXL-positive cancer cells by its ligand GAS6 induced the expression of several EMT-associated genes (SNAIL, SLUG, and VIM) through an intracellular signaling implicating the transcription factor FRA-1, important in cell invasion and plasticity, and increased their migration/invasion capacity. 20G7-D9 induced AXL degradation and inhibited all AXL/GAS6-dependent cell signaling implicated in EMT and in cell migration/invasion.Conclusions: The anti-AXL antibody 20G7-D9 represents a promising therapeutic strategy in TNBC with mesenchymal features by inhibiting AXL-dependent EMT, tumor growth, and metastasis formation. Clin Cancer Res; 23(11); 2806-16. ©2016 AACR.


Subject(s)
Antibodies, Anti-Idiotypic/administration & dosage , Cell Proliferation/drug effects , Proto-Oncogene Proteins/immunology , Receptor Protein-Tyrosine Kinases/immunology , Triple Negative Breast Neoplasms/therapy , Animals , Antibodies, Anti-Idiotypic/immunology , Cell Movement/drug effects , Cell Movement/immunology , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/immunology , Female , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , Mice , Neoplasm Metastasis , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
5.
Mol Cancer Res ; 14(11): 1045-1053, 2016 11.
Article in English | MEDLINE | ID: mdl-27458033

ABSTRACT

Angiogenesis is critical for tumor growth and survival and involves interactions between cancer and endothelial cells. Prostate-specific membrane antigen (PSMA/FOLH1) is expressed in the neovasculature of several types of cancer. However, the study of neovascular PSMA expression has been impeded as human umbilical vein endothelial cell (HUVEC) cultures are PSMA-negative and both tumor xenografts and patient-derived xenograft (PDX) models are not known to express PSMA in their vasculature. Therefore, PSMA expression was examined in HUVECs, in vitro and in vivo, and we tested the hypothesis that cancer cell-HUVEC crosstalk could induce the expression of PSMA in HUVECs. Interestingly, conditioned media from several cancer cell lines induced PSMA expression in HUVECs, in vitro, and these lines induced PSMA, in vivo, in a HUVEC coimplantation mouse model. Furthermore, HUVECs in which PSMA expression was induced were able to internalize J591, a mAb that recognizes an extracellular epitope of PSMA as well as nanoparticles bearing a PSMA-binding ligand/inhibitor. These findings offer new avenues to study the molecular mechanism responsible for tumor cell induction of PSMA in neovasculature as well as the biological role of PSMA in neovasculature. Finally, these data suggest that PSMA-targeted therapies could synergize with antiangiogenic and/or other antitumor agents and provide a promising model system to test therapeutic modalities that target PSMA in these settings. IMPLICATIONS: Cancer cells are able to induce PSMA expression in HUVECs, in vitro and in vivo, allowing internalization of PSMA-specific mAbs and nanoparticles bearing a PSMA-binding ligand/inhibitor. Mol Cancer Res; 14(11); 1045-53. ©2016 AACR.


Subject(s)
Antibodies/metabolism , Antigens, Surface/metabolism , Culture Media, Conditioned/pharmacology , Glutamate Carboxypeptidase II/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Pathologic/metabolism , Animals , Antigens, Surface/genetics , Antigens, Surface/immunology , Cell Line, Tumor , Epitopes/immunology , Glutamate Carboxypeptidase II/genetics , Glutamate Carboxypeptidase II/immunology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Male , Mice , Neoplasm Transplantation , Neovascularization, Pathologic/genetics
6.
J Pathol ; 237(1): 14-24, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25965880

ABSTRACT

A tyrosine kinase network composed of the TAM receptor AXL and the cytoplasmic kinases LYN and SYK is involved in nilotinib-resistance of chronic myeloid leukaemia (CML) cells. Here, we show that the E3-ubiquitin ligase CBL down-regulation occurring during prolonged drug treatment plays a critical role in this process. Depletion of CBL in K562 cells increases AXL and LYN protein levels, promoting cell resistance to nilotinib. Conversely, forced expression of CBL in nilotinib-resistant K562 cells (K562-rn) dramatically reduces AXL and LYN expression and resensitizes K562-rn cells to nilotinib. A similar mechanism was found to operate in primary CML CD34(+) cells. Mechanistically, the E3-ligase CBL counteracts AXL/SYK signalling, promoting LYN transcription by controlling AXL protein stability. Surprisingly, the role of AXL in resistance was independent of its ligand GAS6 binding and its TK activity, in accordance with a scaffold activity for this receptor being involved in this cellular process. Collectively, our results demonstrate a pivotal role for CBL in the control of a tyrosine kinase network mediating resistance to nilotinib treatment in CML cells.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Intracellular Signaling Peptides and Proteins/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins/metabolism , Pyrimidines/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , src-Family Kinases/metabolism , Enzyme Stability , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Ligands , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-cbl/genetics , RNA Interference , Receptor Protein-Tyrosine Kinases/genetics , Syk Kinase , Time Factors , Transfection , src-Family Kinases/genetics , Axl Receptor Tyrosine Kinase
7.
Oncotarget ; 5(16): 7138-48, 2014 Aug 30.
Article in English | MEDLINE | ID: mdl-25216528

ABSTRACT

The anti-HER2 antibody pertuzumab inhibits HER2 dimerization and affects HER2/HER3 dimer formation and signaling. As HER3 and its ligand neuregulin are implicated in pancreatic tumorigenesis, we investigated whether HER3 expression could be a predictive biomarker of pertuzumab efficacy in HER2low-expressing pancreatic cancer. We correlated in vitro and in vivo HER3 expression and neuregulin dependency with the inhibitory effect of pertuzumab on cell viability and tumor progression. HER3 knockdown in BxPC-3 cells led to resistance to pertuzumab therapy. Pertuzumab treatment of HER3-expressing pancreatic cancer cells increased HER3 at the cell membrane, whereas the anti-HER3 monoclonal antibody 9F7-F11 down-regulated it. Both antibodies blocked HER3 and AKT phosphorylation and inhibited HER2/HER3 heterodimerization but affected differently HER2 and HER3 homodimers. The pertuzumab/9F7-F11 combination enhanced tumor inhibition and the median survival time in mice xenografted with HER3-expressing pancreatic cancer cells. Finally, HER2 and HER3 were co-expressed in 11% and HER3 alone in 27% of the 45 pancreatic ductal adenocarcinomas analyzed by immunohistochemistry. HER3 is essential for pertuzumab efficacy in HER2low-expressing pancreatic cancer and HER3 expression might be a predictive biomarker of pertuzumab efficacy in such cancers. Further studies in clinical samples are required to confirm these findings and the interest of combining anti-HER2 and anti-HER3 therapeutic antibodies.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/enzymology , Receptor, ErbB-3/metabolism , Animals , Biomarkers, Tumor , Cell Proliferation/drug effects , Female , Humans , Mice , Mice, Nude , Pancreatic Neoplasms/pathology , Random Allocation , Receptor, ErbB-3/antagonists & inhibitors , Signal Transduction , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
8.
Mol Cancer Ther ; 12(10): 2121-34, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23960095

ABSTRACT

Despite recent advances in the treatment of colorectal cancer (CRC), tumor resistance is a frequent cause of chemotherapy failure. Therefore, new treatment options are needed to improve survival of patients with irinotecan-refractory CRCs, particularly those bearing KRAS mutations that preclude the use of anti-EGFR therapies. In this study, we investigated whether sorafenib could reverse irinotecan resistance, thereby enhancing the therapeutic efficacy of routinely used irinotecan-based chemotherapy. We used both in vitro (the HCT116, SW48, SW620, and HT29 colon adenocarcinoma cell lines and four SN-38-resistant HCT-116 and SW48 clones) and in vivo models (nude mice xenografted with SN-38-resistant HCT116 cells) to test the efficacy of sorafenib alone or in combination with irinotecan or its active metabolite, SN-38. We have shown that sorafenib improved the antitumoral activity of irinotecan in vitro, in both parental and SN-38-resistant colon adenocarcinoma cell lines independently of their KRAS status, as well as in vivo, in xenografted mice. By inhibiting the drug-efflux pump ABCG2, sorafenib favors irinotecan intracellular accumulation and enhances its toxicity. Moreover, we found that sorafenib improved the efficacy of irinotecan by inhibiting the irinotecan-mediated p38 and ERK activation. In conclusion, our results show that sorafenib can suppress resistance to irinotecan and suggest that sorafenib could be used to overcome resistance to irinotecan-based chemotherapies in CRC, particularly in KRAS-mutated tumors.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Camptothecin/analogs & derivatives , Colorectal Neoplasms/drug therapy , Neoplasm Proteins/genetics , Niacinamide/analogs & derivatives , Phenylurea Compounds/administration & dosage , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Animals , Camptothecin/administration & dosage , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm , Drug Synergism , ErbB Receptors , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , Irinotecan , Mice , Niacinamide/administration & dosage , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , Sorafenib , Xenograft Model Antitumor Assays , ras Proteins/genetics
9.
Neoplasia ; 15(3): 335-47, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23479511

ABSTRACT

Blockade of the human epidermal growth factor receptor 3 (HER3) and of the downstream phosphatidylinositide 3-kinase (PI3K)/AKT pathway is a prerequisite for overcoming drug resistance and to develop novel treatments for cancers that are not eligible for the currently approved targeted therapies. To this end, we generated specific antibodies (Abs) against domain 1 (D1) and domain 3 (D3) of HER3 that recognize epitopes that do not overlap with the neuregulin-binding site. The fully human H4B-121 Ab and the mouse monoclonal Abs 16D3-C1 and 9F7-F11 inhibited tumor growth in nude mice xenografted with epidermoid, pancreatic, or triple-negative breast cancer cells. The combination of one anti-HER3 Ab and trastuzumab improved tumor growth inhibition in mice xenografted with HER2(low) cancer cell lines, for which trastuzumab alone shows no or moderate efficiency. Ab-induced disruption of tumor growth was associated with G1 cell cycle arrest, proliferation inhibition, and apoptosis of cancer cells. Anti-HER3 Abs blocked HER2/HER3 heterodimerization and HER3 phosphorylation at the cell membrane, leading to inhibition of phosphorylation of the downstream AKT targets murine double minute 2, X-linked inhibitor of apoptosis, and forkhead box O1. This study demonstrates that anti-HER3 D1 and D3 Abs could represent a new option for immunotherapy of pancreatic and triple-negative breast cancers.


Subject(s)
Antibodies, Monoclonal/pharmacology , Forkhead Transcription Factors/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Antibody Specificity , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dimerization , Epitopes/chemistry , Epitopes/immunology , Female , Forkhead Box Protein O1 , Humans , Mice , Molecular Sequence Data , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation/drug effects , Protein Binding , Receptor, ErbB-2/chemistry , Receptor, ErbB-3/chemistry , Receptor, ErbB-3/immunology , Trastuzumab , Tumor Burden/drug effects
10.
Mol Ther ; 20(12): 2315-25, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22990670

ABSTRACT

The development of small interfering RNA (siRNA) for the treatment of human disorders has been often hampered by their low transfection efficiency in vivo. In order to overcome this major drawback, various in vivo siRNA transfection methods have been developed. However, their capacity to transfect immune or insulin-producing ß-cells within the pancreas for the treatment of autoimmune diabetes remains undetermined. We found that lipid- or polyethylenimine-based delivery agents were efficient to address siRNA molecules within pancreas-associated antigen-presenting cells (APCs) (but not ß-cells) and particularly a CD11b(+) cell population comprising both CD11b(+)CD11c(neg) macrophages and CD11b(+)CD11c(+) dendritic cells. However, the route of administration and the carrier composition greatly affected the transfection efficacy. Therapeutically, we showed that early (starting at 6-week-old) short-course treatment with lipid/Alox15-specific siRNA complex promoted long-term protection from type 1 diabetes (T1D) in wild-type (WT) nonobese diabetic (NOD) mice. Alox15 downregulation in pancreas-associated CD11b(+) cells significantly upregulated a variety of costimulatory molecules and particularly the programmed death 1 ligand 1 (PD-L1) pathway involved in tolerance induction. Concomitantly, we found that regulatory T cells were increased in the pancreas of lipid/Alox15 siRNA-treated NOD mice. Collectively, our data provide new insights into the development of siRNA-based therapeutics for T1D.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Genetic Vectors/administration & dosage , Liposomes/chemistry , Pancreas/metabolism , Polyethylene Glycols/chemistry , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/metabolism , Animals , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Blotting, Western , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Female , Flow Cytometry , Genetic Vectors/chemistry , Mice , Mice, Inbred NOD , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism
11.
Diabetes ; 61(6): 1490-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22362174

ABSTRACT

We have previously developed a combination therapy (CT) using anti-CD3 monoclonal antibodies together with islet-(auto)antigen immunizations that can more efficiently reverse type 1 diabetes (T1D) than either entity alone. However, clinical translation of antigen-specific therapies in general is hampered by the lack of biomarkers that could be used to optimize the modalities of antigen delivery and to predict responders from nonresponders. To support the rapid identification of candidate biomarkers, we systematically evaluated multiple variables in a mathematical disease model. The in silico predictions were validated by subsequent laboratory data in NOD mice with T1D that received anti-CD3/oral insulin CT. Our study shows that higher anti-insulin autoantibody levels at diagnosis can distinguish responders and nonresponders among recipients of CT exquisitely well. In addition, early posttreatment changes in proinflammatory cytokines were indicative of long-term remission. Coadministration of oral insulin improved and prolonged the therapeutic efficacy of anti-CD3 therapy, and long-term protection was achieved by maintaining elevated insulin-specific regulatory T cell numbers that efficiently lowered diabetogenic effector memory T cells. Our validation of preexisting autoantibodies as biomarkers to distinguish future responders from nonresponders among recipients of oral insulin provides a compelling and mechanistic rationale to more rapidly translate anti-CD3/oral insulin CT for human T1D.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Autoantibodies/immunology , CD3 Complex/immunology , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Animals , Antibodies, Monoclonal/administration & dosage , Diabetes Mellitus, Type 1/blood , Female , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Mice , Mice, Inbred NOD
SELECTION OF CITATIONS
SEARCH DETAIL
...