Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomedicine (Lond) ; : 1-16, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225150

ABSTRACT

Aim: We investigate combining Prussian Blue nanoparticles (PBNPs), as photothermal therapy (PTT) agents, with agonistic CD137 antibodies (αCD137) on a single nanoparticle platform to deliver non-toxic, anti-tumor efficacy in SM1 murine melanoma.Methods: We electrostatically coated PBNPs with αCD137 (αCD137-PBNPs) and quantified their physicochemical characteristics, photothermal and co-stimulatory capabilities. Next, we tested the efficacy and hepatotoxicity of PTT using αCD137-PBNPs (αCD137-PBNP-PTT) in SM1 tumor-bearing mice.Results: The αCD137-PBNPs retained both the photothermal and agonistic properties of the PBNPs and αCD137, respectively. In vivo, SM1 tumor-bearing mice treated with αCD137-PBNP-PTT exhibited a significantly higher survival rate (50%) without hepatotoxicity, compared with control treatments.Conclusion: These data suggest the potential utility of co-localizing PBNP-PTT with αCD137-based agonism as a novel combination nanomedicine.


Photothermal therapy is a strategy to kill cancer cells that uses nanoparticles and lasers to generate heat. Here, we combine photothermal therapy with an immunotherapy that activates the body's T cells, a type of white blood cell, on a single platform, to treat melanoma, a type of skin cancer in a mouse. We find that this novel nanoparticle-based platform significantly improves the survival of mice bearing melanoma, without increasing liver toxicity.

2.
Nano Res ; 15(3): 2300-2314, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36089987

ABSTRACT

Despite the promise of immunotherapy such as the immune checkpoint inhibitors (ICIs) anti-PD-1 and anti-CTLA-4 for advanced melanoma, only 26%-52% of patients respond, and many experience grade III/IV immune-related adverse events. Motivated by the need for an effective therapy for patients non-responsive to clinically approved ICIs, we have developed a novel nanoimmunotherapy that combines locally administered Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) with systemically administered agonistic anti-CD137 monoclonal antibody therapy (aCD137). PBNP-PTT was administered at various thermal doses to melanoma cells in vitro, and was combined with aCD137 in vivo to test treatment effects on melanoma tumor progression, animal survival, immunological protection against tumor rechallenge, and hepatotoxicity. When administered at a melanoma-specific thermal dose, PBNP-PTT elicits immunogenic cell death (ICD) in melanoma cells and upregulates markers associated with antigen presentation and immune cell co-stimulation in vitro. Consequently, PBNP-PTT eliminates primary melanoma tumors in vivo, yielding long-term tumor-free survival. However, the antitumor immune effects generated by PBNP-PTT cannot eliminate secondary tumors, despite significantly slowing their growth. The addition of aCD137 enables significant abscopal efficacy and improvement of survival, functioning through activated dendritic cells and tumor-infiltrating CD8+ T cells, and generates CD4+ and CD8+ T cell memory that manifests in the rejection of tumor rechallenge, with no long-term hepatotoxicity. This study describes for the first time a novel and effective nanoimmunotherapy combination of PBNP-PTT with aCD137 mAb therapy for melanoma.

3.
Adv Healthc Mater ; 11(20): e2201084, 2022 10.
Article in English | MEDLINE | ID: mdl-35943173

ABSTRACT

Photothermal therapy (PTT) represents a promising modality for tumor control typically using infrared light-responsive nanoparticles illuminated by a wavelength-matched external laser. However, due to the constraints of light penetration, PTT is generally restricted to superficially accessible tumors. With the goal of extending the benefits of PTT to all tumor settings, interstitial PTT (I-PTT) is evaluated by the photothermal activation of intratumorally administered Prussian blue nanoparticles with a laser fiber positioned interstitially within the tumor. This interstitial fiber, which is fitted with a terminal diffuser, distributes light within the tumor microenvironment from the "inside-out" as compared to from the "outside-in" traditionally observed during superficially administered PTT (S-PTT). I-PTT improves the heating efficiency and heat distribution within a target treatment area compared to S-PTT. Additionally, I-PTT generates increased cytotoxicity and thermal damage at equivalent thermal doses, and elicits immunogenic cell death at lower thermal doses in targeted neuroblastoma tumor cells compared to S-PTT. In vivo, I-PTT induces significantly higher long-term tumor regression, lower rates of tumor recurrence, and improved long-term survival in multiple syngeneic murine models of neuroblastoma. This study highlights the significantly enhanced therapeutic benefit of I-PTT compared to traditional S-PTT as a promising treatment modality for solid tumors.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Neuroblastoma , Mice , Animals , Phototherapy , Photothermal Therapy , Cell Line, Tumor , Neuroblastoma/therapy , Neuroblastoma/pathology , Neoplasms/drug therapy , Tumor Microenvironment
4.
Nanomaterials (Basel) ; 12(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35957076

ABSTRACT

Prussian blue nanoparticles (PBNPs) are effective photothermal therapy (PTT) agents: they absorb near-infrared radiation and reemit it as heat via phonon-phonon relaxations that, in the presence of tumors, can induce thermal and immunogenic cell death. However, in the context of central nervous system (CNS) tumors, the off-target effects of PTT have the potential to result in injury to healthy CNS tissue. Motivated by this need for targeted PTT agents for CNS tumors, we present a PBNP formulation that targets fibroblast growth factor-inducible 14 (Fn14)-expressing glioblastoma cell lines. We conjugated an antibody targeting Fn14, a receptor abundantly expressed on many glioblastomas but near absent on healthy CNS tissue, to PBNPs (aFn14-PBNPs). We measured the attachment efficiency of aFn14 onto PBNPs, the size and stability of aFn14-PBNPs, and the ability of aFn14-PBNPs to induce thermal and immunogenic cell death and target and treat glioblastoma tumor cells in vitro. aFn14 remained stably conjugated to the PBNPs for at least 21 days. Further, PTT with aFn14-PBNPs induced thermal and immunogenic cell death in glioblastoma tumor cells. However, in a targeted treatment assay, PTT was only effective in killing glioblastoma tumor cells when using aFn14-PBNPs, not when using PBNPs alone. Our methodology is novel in its targeting moiety, tumor application, and combination with PTT. To the best of our knowledge, PBNPs have not been investigated as a targeted PTT agent in glioblastoma via conjugation to aFn14. Our results demonstrate a novel and effective method for delivering targeted PTT to aFn14-expressing tumor cells via aFn14 conjugation to PBNPs.

5.
Cancers (Basel) ; 14(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35326601

ABSTRACT

Photothermal therapy (PTT) is an effective method for tumor eradication and has been successfully combined with immunotherapy. However, besides its cytotoxic effects, little is known about the effect of the PTT thermal dose on the immunogenicity of treated tumor cells. Therefore, we administered a range of thermal doses using Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) and assessed their effects on tumor cell death and concomitant immunogenicity correlates in two human neuroblastoma cell lines: SH-SY5Y (MYCN-non-amplified) and LAN-1 (MYCN-amplified). PBNP-PTT generated thermal dose-dependent tumor cell killing and immunogenic cell death (ICD) in both tumor lines in vitro. However, the effect of the thermal dose on ICD and the expression of costimulatory molecules, immune checkpoint molecules, major histocompatibility complexes, an NK cell-activating ligand, and a neuroblastoma-associated antigen were significantly more pronounced in SH-SY5Y cells compared with LAN-1 cells, consistent with the high-risk phenotype of LAN-1 cells. In functional co-culture studies in vitro, T cells exhibited significantly higher cytotoxicity toward SH-SY5Y cells relative to LAN-1 cells at equivalent thermal doses. This preliminary report suggests the importance of moving past the traditional focus of using PTT solely for tumor eradication to one that considers the immunogenic effects of PTT thermal dose to facilitate its success in cancer immunotherapy.

6.
Nanomedicine (Lond) ; 17(29): 2159-2171, 2022 12.
Article in English | MEDLINE | ID: mdl-36734362

ABSTRACT

Aim: To investigate Prussian blue nanoparticles (PBNPs) coated with the synthetic analog of dsRNA polyinosinic-polycytidylic acid (polyIC) for their ability to function as HIV latency reversing agents. Methods: A layer-by-layer method was used to synthesize polyIC-coated PBNPs (polyIC-PBNPs). PolyIC-PBNPs were stable and monodisperse, maintained the native absorbance properties of both polyIC and PBNPs and were obtained with high nanoparticle collection yield and polyIC attachment efficiencies. Results: PolyIC-PBNPs were more effective in reactivating latent HIV than free polyIC in a cell model of HIV latency. Furthermore, polyIC-PBNPs were more effective in promoting immune activation than free polyIC in CD4 and CD8 T cells. Conclusion: PBNPs function as efficient carriers of nucleic acids to directly reverse HIV latency and enhance immune activation.


HIV is a virus that attacks and weakens the immune system. If left untreated, HIV infection leads to AIDS. To combat this, administration of antiretroviral therapy allows HIV to be controlled, and an infected individual may live a normal life. However, there is no cure for HIV because the virus persists within hidden reservoirs of latently infected cells that remain undetected by the immune system. A cure strategy currently under investigation in the field utilizes a latency reversing agent (LRA) to reactivate latent HIV with the goal of promoting a response from the immune system. To achieve this goal, this study used a nanoparticle-based method to administer LRAs. More specifically, the authors synthesized Prussian blue nanoparticles (PBNPs) coated with the LRA polyinosinic-polycytidylic acid (polyIC), a synthetic analog of dsRNA. This study demonstrates that when administered in the form of nanoparticles, polyIC-coated PBNPs generate both enhanced reactivation of HIV and immune activation when compared with free polyIC. These results indicate a promising potential for using PBNPs to deliver LRAs such as polyIC to enhance current and future HIV cure strategies.


Subject(s)
HIV Infections , HIV-1 , Nanoparticles , Humans , Virus Activation , Virus Latency , HIV Infections/drug therapy , CD4-Positive T-Lymphocytes
7.
Transl Oncol ; 13(10): 100823, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32652470

ABSTRACT

High-risk neuroblastoma, which is associated with regional and systemic metastasis, is a leading cause of cancer-related mortality in children. Responding to this need for novel therapies for high-risk patients, we have developed a "nanoimmunotherapy," which combines photothermal therapy (PTT) using CpG oligodeoxynucleotide-coated Prussian blue nanoparticles (CpG-PBNPs) combined with anti-CTLA-4 (aCTLA-4) immunotherapy. Our in vitro studies demonstrate that in addition to causing ablative tumor cell death, our nanoimmunotherapy alters the surface levels of co-stimulatory, antigen-presenting, and co-inhibitory molecules on neuroblastoma tumor cells. When administered in a syngeneic, murine model of neuroblastoma bearing synchronous Neuro2a tumors, the CpG-PBNP-PTT plus aCTLA-4 nanoimmunotherapy elicits complete tumor regression in both primary (CpG-PBNP-PTT-treated) and secondary tumors, and long-term survival in a significantly higher proportion (55.5%) of treated-mice compared with the controls. Furthermore, the surviving, nanoimmunotherapy-treated animals reject Neuro2a rechallenge, suggesting that the therapy generates immunological memory. Additionally, the depletion of CD4+, CD8+, and NK+ populations abrogate the observed therapeutic responses of the nanoimmunotherapy. These findings demonstrate the importance of concurrent PTT-based cytotoxicity and the antitumor immune effects of PTT, CpG, and aCTLA-4 in generating a robust abscopal effect against neuroblastoma.

8.
Nanomaterials (Basel) ; 10(1)2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31963449

ABSTRACT

In this study, we describe poly (lactic-co-glycolic) acid (PLGA)-based nanoparticles that combine photothermal therapy (PTT) with epigenetic therapy for melanoma. Specifically, we co-encapsulated indocyanine green (ICG), a PTT agent, and Nexturastat A (NextA), an epigenetic drug within PLGA nanoparticles (ICG-NextA-PLGA; INAPs). We hypothesized that combining PTT with epigenetic therapy elicits favorable cytotoxic and immunomodulatory responses that result in improved survival in melanoma-bearing mice. We utilized a nanoemulsion synthesis scheme to co-encapsulate ICG and NextA within stable and monodispersed INAPs. The INAPs exhibited concentration-dependent and near-infrared (NIR) laser power-dependent photothermal heating characteristics, and functioned as effective single-use agents for PTT of melanoma cells in vitro. The INAPs functioned as effective epigenetic therapy agents by inhibiting the expression of pan-histone deacetylase (HDAC) and HDAC6-specific activity in melanoma cells in vitro. When used for both PTT and epigenetic therapy in vitro, the INAPs increased the expression of co-stimulatory molecules and major histocompatibility complex (MHC) Class I in melanoma cells relative to controls. These advantages persisted in vivo in a syngeneic murine model of melanoma, where the combination therapy slowed tumor progression and improved median survival. These findings demonstrate the potential of INAPs as agents of PTT and epigenetic therapy for melanoma.

SELECTION OF CITATIONS
SEARCH DETAIL