Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cardiol ; 364: 148-156, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35716937

ABSTRACT

OBJECTIVE: We aim to validate four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) peak velocity tracking methods for measuring the peak velocity of mitral inflow against Doppler echocardiography. METHOD: Fifty patients were recruited who had 4D flow CMR and Doppler Echocardiography. After transvalvular flow segmentation using established valve tracking methods, peak velocity was automatically derived using three-dimensional streamlines of transvalvular flow. In addition, a static-planar method was used at the tip of mitral valve to mimic Doppler technique. RESULTS: Peak E-wave mitral inflow velocity was comparable between TTE and the novel 4D flow automated dynamic method (0.9 ± 0.5 vs 0.94 ± 0.6 m/s; p = 0.29) however there was a statistically significant difference when compared with the static planar method (0.85 ± 0.5 m/s; p = 0.01). Median A-wave peak velocity was also comparable across TTE and the automated dynamic streamline (0.77 ± 0.4 vs 0.76 ± 0.4 m/s; p = 0.77). A significant difference was seen with the static planar method (0.68 ± 0.5 m/s; p = 0.04). E/A ratio was comparable between TTE and both the automated dynamic and static planar method (1.1 ± 0.7 vs 1.15 ± 0.5 m/s; p = 0.74 and 1.15 ± 0.5 m/s; p = 0.5 respectively). Both novel 4D flow methods showed good correlation with TTE for E-wave (dynamic method; r = 0.70; P < 0.001 and static-planar method; r = 0.67; P < 0.001) and A-wave velocity measurements (dynamic method; r = 0.83; P < 0.001 and static method; r = 0.71; P < 0.001). The automated dynamic method demonstrated excellent intra/inter-observer reproducibility for all parameters. CONCLUSION: Automated dynamic peak velocity tracing method using 4D flow CMR is comparable to Doppler echocardiography for mitral inflow assessment and has excellent reproducibility for clinical use.


Subject(s)
Magnetic Resonance Imaging , Mitral Valve , Blood Flow Velocity , Humans , Magnetic Resonance Spectroscopy , Mitral Valve/diagnostic imaging , Observer Variation , Predictive Value of Tests , Reproducibility of Results
2.
BMC Res Notes ; 15(1): 151, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35488286

ABSTRACT

OBJECTIVE: Doppler echocardiographic aortic valve peak velocity and peak pressure gradient assessment across the aortic valve (AV) is the mainstay for diagnosing aortic stenosis. Four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) is emerging as a valuable diagnostic tool for estimating the peak pressure drop across the aortic valve, but assessment remains cumbersome. We aimed to validate a novel semi-automated pipeline 4D flow CMR method of assessing peak aortic value pressure gradient (AVPG) using the commercially available software solution, CAAS MR Solutions, against invasive angiographic methods. RESULTS: We enrolled 11 patients with severe AS on echocardiography from the EurValve programme. All patients had pre-intervention doppler echocardiography, invasive cardiac catheterisation with peak pressure drop assessment across the AV and 4D flow CMR. The peak AVPG was 51.9 ± 35.2 mmHg using the invasive pressure drop method and 52.2 ± 29.2 mmHg for the 4D flow CMR method (semi-automated pipeline), with good correlation between the two methods (r = 0.70, p = 0.017). Assessment of AVPG by 4D flow CMR using the novel semi-automated pipeline method shows excellent agreement to invasive assessment when compared to doppler-based methods and advocate for its use as complementary to echocardiography.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Aortic Valve/diagnostic imaging , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/pathology , Blood Flow Velocity , Echocardiography , Echocardiography, Doppler , Humans
3.
Biomed Eng Online ; 20(1): 84, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34419047

ABSTRACT

In this study, we analyzed turbulent flows through a phantom (a 180[Formula: see text] bend with narrowing) at peak systole and a patient-specific coarctation of the aorta (CoA), with a pulsating flow, using magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). For MRI, a 4D-flow MRI is performed using a 3T scanner. For CFD, the standard [Formula: see text], shear stress transport [Formula: see text], and Reynolds stress (RSM) models are applied. A good agreement between measured and simulated velocity is obtained for the phantom, especially for CFD with RSM. The wall shear stress (WSS) shows significant differences between CFD and MRI in absolute values, due to the limited near-wall resolution of MRI. However, normalized WSS shows qualitatively very similar distributions of the local values between MRI and CFD. Finally, a direct comparison between in vivo 4D-flow MRI and CFD with the RSM turbulence model is performed in the CoA. MRI can properly identify regions with locally elevated or suppressed WSS. If the exact values of the WSS are necessary, CFD is the preferred method. For future applications, we recommend the use of the combined MRI/CFD method for analysis and evaluation of the local flow patterns and WSS in the aorta.


Subject(s)
Aortic Coarctation , Aortic Coarctation/diagnostic imaging , Blood Flow Velocity , Hemodynamics , Humans , Hydrodynamics , Magnetic Resonance Imaging , Models, Cardiovascular , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...