Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 35(3): 687-94, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26329298

ABSTRACT

Trace metals can have subtle yet chronic impacts on organisms by inducing physiological stress that reduces their survival or impedes their ability to tolerate additional environmental stressors. The toxicity literature indicates, however, that aquatic organisms react differently to trace metals depending on the environments in which they reside. The objective of the present study was to understand the response of northern leopard frog (Lithobates pipiens) larvae to ionic copper (Cu), nickel (Ni), and their combination within an effluent water collected downstream of a tailings wetland area. Tadpoles were assigned randomly to 1 of 8 Cu concentrations (8-200 µg/L), 7 Ni concentrations (160-1200 µg/L), or 8 Cu and Ni combined concentrations (8:160-200:1200 µg/L) and showed significant differences in survival and life history traits among treatments. In the Cu and Cu and Ni combined treatments, tadpole survival decreased with increased Cu exposure starting at Cu = 160 µg/L and in the Ni treatment, tadpole survival decreased with increased Ni exposure starting at Ni = 650 µg/L. All Cu-exposed treatments induced a growth increase as the concentration increased, whereas the tadpoles showed a significant decrease in growth rate in Ni treatments. These contrasting outcomes suggest a plastic response to trace metals whereby tadpoles allocate energy reserves toward either escaping or coping with stress. Finally, the authors' argue that future studies will benefit from examining the impacts of multiple stressors in aquatic ecosystems to provide better environmental mitigation.


Subject(s)
Copper/toxicity , Metallurgy , Nickel/toxicity , Rana pipiens/growth & development , Water Pollutants, Chemical/toxicity , Animals , Homeostasis , Industrial Waste/analysis , Larva , Survival Analysis , Trace Elements/toxicity , Wetlands
2.
Evol Appl ; 7(7): 723-33, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25469155

ABSTRACT

The context-dependent investigations of host-pathogen genotypic interactions, where environmental factors are explicitly incorporated, allow the assessment of both coevolutionary history and contemporary ecological influences. Such a functional explanatory framework is particularly valuable for describing mortality trends and identifying drivers of disease risk more accurately. Using two common North American frog species (Lithobates pipiens and Lithobates sylvaticus) and three strains of frog virus 3 (FV3) at different temperatures, we conducted a laboratory experiment to investigate the influence of host species/genotype, ranavirus strains, temperature, and their interactions, in determining mortality and infection patterns. Our results revealed variability in host susceptibility and strain infectivity along with significant host-strain interactions, indicating that the outcome of an infection is dependent on the specific combination of host and virus genotypes. Moreover, we observed a strong influence of temperature on infection and mortality probabilities, revealing the potential for genotype-genotype-environment interactions to be responsible for unexpected mortality in this system. Our study thus suggests that amphibian hosts and ranavirus strains genetic characteristics should be considered in order to understand infection outcomes and that the investigation of coevolutionary mechanisms within a context-dependent framework provides a tool for the comprehensive understanding of disease dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...