Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
J Infect Dis ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696335

ABSTRACT

BACKGROUND: Skeletal muscle injury in Ebola virus disease (EVD) has been reported, but its association with morbidity and mortality remains poorly defined. METHODS: Retrospective study of patients admitted to two EVD Treatment Units, over an eight-month period in 2019, during a large EVD epidemic in the Democratic Republic of the Congo. RESULTS: 333 patients (median age 30 years, 58% female) had at least one creatine kinase (CK) measurement (total 2,229 CK measurements, median 5 (IQR 1-11) per patient). 271 patients (81%) had an elevated CK (>380U/L), 202 (61%) had rhabdomyolysis (CK>1,000 IU/L), and 45 (14%) had severe rhabdomyolysis (≥5,000U/L). Among survivors, the maximum CK level was median 1,600 (IQR 550 to 3,400), peaking 3.4 days after admission (IQR 2.3 to 5.5) and decreasing thereafter. Among fatal cases, the CK rose monotonically until death, with maximum CK level of median 2,900 U/L (IQR 1,500 to 4,900). Rhabdomyolysis at admission was an independent predictor of AKI (aOR 2.2 [95%CI 1.2-3.8], p=0.0065) and mortality (aHR 1.7 [95%CI 1.03-2.9], p=0.037). CONCLUSIONS: Rhabdomyolysis is associated with AKI and mortality in EVD patients. These findings may inform clinical practice by identifying lab monitoring priorities and highlighting the importance of fluid management.

2.
Clin Infect Dis ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530249

ABSTRACT

BACKGROUND: Asymptomatic SARS-CoV-2 infection in children is highly prevalent but its acute and chronic implications have been minimally described. METHODS: In this controlled case-ascertained household transmission study, we recruited asymptomatic children <18 years with SARS-CoV-2 nucleic acid testing performed at 12 tertiary care pediatric institutions in Canada and the United States. We attempted to recruit all test-positive children and 1 to 3 test-negative, site-matched controls. After 14 days' follow-up we assessed the clinical (ie, symptomatic) and combined (ie, test-positive, or symptomatic) secondary attack rates (SARs) among household contacts. Additionally, post-COVID-19 condition (PCC) was assessed in SARS-CoV-2-positive participating children after 90 days' follow-up. RESULTS: A total of 111 test-positive and 256 SARS-CoV-2 test-negative asymptomatic children were enrolled between January 2021 and April 2022. After 14 days, excluding households with co-primary cases, the clinical SAR among household contacts of SARS-CoV-2-positive and -negative index children was 10.6% (19/179; 95% CI: 6.5%-16.1%) and 2.0% (13/663; 95% CI: 1.0%-3.3%), respectively (relative risk = 5.4; 95% CI: 2.7-10.7). In households with a SARS-CoV-2-positive index child, age <5 years, being pre-symptomatic (ie, developed symptoms after test), and testing positive during Omicron and Delta circulation periods (vs earlier) were associated with increased clinical and combined SARs among household contacts. Among 77 asymptomatic SARS-CoV-2-infected children with 90-day follow-up, 6 (7.8%; 95% CI: 2.9%-16.2%) reported PCC. CONCLUSIONS: Asymptomatic SARS-CoV-2-infected children, especially those <5 years, are important contributors to household transmission, with 1 in 10 exposed household contacts developing symptomatic illness within 14 days. Asymptomatic SARS-CoV-2-infected children may develop PCC.

3.
Lancet ; 403(10428): 756-765, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38367643

ABSTRACT

BACKGROUND: Supplemental O2 is not always available at health facilities in low-income and middle-income countries (LMICs). Solar-powered O2 delivery can overcome gaps in O2 access, generating O2 independent of grid electricity. We hypothesized that installation of solar-powered O2 systems on the paediatrics ward of rural Ugandan hospitals would lead to a reduction in mortality among hypoxaemic children. METHODS: In this pragmatic, country-wide, stepped-wedge, cluster randomised controlled trial, solar-powered O2 systems (ie, photovoltaic cells, battery bank, and O2 concentrator) were sequentially installed at 20 rural health facilities in Uganda. Sites were selected for inclusion based on the following criteria: District Hospital or Health Centre IV with paediatric inpatient services; supplemental O2 on the paediatric ward was not available or was unreliable; and adequate space to install solar panels, a battery bank, and electrical wiring. Allocation concealment was achieved for sites up to 2 weeks before installation, but the study was not masked overall. Children younger than 5 years admitted to hospital with hypoxaemia and respiratory signs were included. The primary outcome was mortality within 48 h of detection of hypoxaemia. The statistical analysis used a linear mixed effects logistic regression model accounting for cluster as random effect and calendar time as fixed effect. The trial is registered at ClinicalTrials.gov, NCT03851783. FINDINGS: Between June 28, 2019, and Nov 30, 2021, 2409 children were enrolled across 20 hospitals and, after exclusions, 2405 children were analysed. 964 children were enrolled before site randomisation and 1441 children were enrolled after site randomisation (intention to treat). There were 104 deaths, 91 of which occurred within 48 h of detection of hypoxaemia. The 48 h mortality was 49 (5·1%) of 964 children before randomisation and 42 (2·9%) of 1440 (one individual did not have vital status documented at 48 h) after randomisation (adjusted odds ratio 0·50, 95% CI 0·27-0·91, p=0·023). Results were sensitive to alternative parameterisations of the secular trend. There was a relative risk reduction of 48·7% (95% CI 8·5-71·5), and a number needed to treat with solar-powered O2 of 45 (95% CI 28-230) to save one life. Use of O2 increased from 484 (50·2%) of 964 children before randomisation to 1424 (98·8%) of 1441 children after randomisation (p<0·0001). Adverse events were similar before and after randomisation and were not considered to be related to the intervention. The estimated cost-effectiveness was US$25 (6-505) per disability-adjusted life-year saved. INTERPRETATION: This stepped-wedge, cluster randomised controlled trial shows the mortality benefit of improving O2 access with solar-powered O2. This study could serve as a model for scale-up of solar-powered O2 as one solution to O2 insecurity in LMICs. FUNDING: Grand Challenges Canada and The Women and Children's Health Research Institute.


Subject(s)
Hospitalization , Hypoxia , Humans , Child , Female , Uganda/epidemiology , Hypoxia/etiology , Hypoxia/therapy , Research Design , Health Facilities
4.
Stat Med ; 43(6): 1153-1169, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38221776

ABSTRACT

Wastewater-based surveillance has become an important tool for research groups and public health agencies investigating and monitoring the COVID-19 pandemic and other public health emergencies including other pathogens and drug abuse. While there is an emerging body of evidence exploring the possibility of predicting COVID-19 infections from wastewater signals, there remain significant challenges for statistical modeling. Longitudinal observations of viral copies in municipal wastewater can be influenced by noisy datasets and missing values with irregular and sparse samplings. We propose an integrative Bayesian framework to predict daily positive cases from weekly wastewater observations with missing values via functional data analysis techniques. In a unified procedure, the proposed analysis models severe acute respiratory syndrome coronavirus-2 RNA wastewater signals as a realization of a smooth process with error and combines the smooth process with COVID-19 cases to evaluate the prediction of positive cases. We demonstrate that the proposed framework can achieve these objectives with high predictive accuracies through simulated and observed real data.


Subject(s)
COVID-19 , Humans , Bayes Theorem , COVID-19/epidemiology , Pandemics , RNA, Viral/genetics , SARS-CoV-2/genetics , Wastewater
5.
Clin Microbiol Rev ; 37(1): e0010322, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38095438

ABSTRACT

Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Wastewater-Based Epidemiological Monitoring , RNA, Viral , Wastewater
6.
J Med Virol ; 95(8): e29028, 2023 08.
Article in English | MEDLINE | ID: mdl-37573569

ABSTRACT

Rotavirus molecular surveillance remains important in the postvaccine era to monitor the changes in transmission patterns, identify vaccine-induced antigenic changes and discover potentially pathogenic vaccine-related strains. The Canadian province of Alberta introduced rotavirus vaccination into its provincial vaccination schedule in June 2015. To evaluate the impact of this program on stool rotavirus positivity rate, strain diversity, and seasonal trends, we analyzed a prospective cohort of children with acute gastroenteritis recruited between December 2014 and August 2018. We identified dynamic changes in rotavirus positivity and genotype trends during pre- and post-rotavirus vaccine introduction periods. Genotypes G9P[8], G1P[8], G2P[4], and G12P[8] predominated consecutively each season with overall lower rotavirus incidence rates in 2016 and 2017. The demographic and clinical features of rotavirus gastroenteritis were comparable among wild-type rotaviruses; however, children with G12P[8] infections were older (p < 0.001). Continued efforts to monitor changes in the molecular epidemiology of rotavirus using whole genome sequence characterization are needed to further understand the impact of the selection pressure of vaccination on rotavirus evolution.


Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus , Child , Child, Preschool , Female , Male , Alberta , Epidemiological Monitoring , Gastroenteritis/epidemiology , Gastroenteritis/virology , Incidence , Patient Acuity , Rotavirus/classification , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus Vaccines/administration & dosage , Humans
7.
Water Res ; 244: 120469, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37634459

ABSTRACT

Wastewater-based surveillance (WBS) has been established as a powerful tool that can guide health policy at multiple levels of government. However, this approach has not been well assessed at more granular scales, including large work sites such as University campuses. Between August 2021 and April 2022, we explored the occurrence of SARS-CoV-2 RNA in wastewater using qPCR assays from multiple complimentary sewer catchments and residential buildings spanning the University of Calgary's campus and how this compared to levels from the municipal wastewater treatment plant servicing the campus. Real-time contact tracing data was used to evaluate an association between wastewater SARS-CoV-2 burden and clinically confirmed cases and to assess the potential of WBS as a tool for disease monitoring across worksites. Concentrations of wastewater SARS-CoV-2 N1 and N2 RNA varied significantly across six sampling sites - regardless of several normalization strategies - with certain catchments consistently demonstrating values 1-2 orders higher than the others. Relative to clinical cases identified in specific sewersheds, WBS provided one-week leading indicator. Additionally, our comprehensive monitoring strategy enabled an estimation of the total burden of SARS-CoV-2 for the campus per capita, which was significantly lower than the surrounding community (p≤0.001). Allele-specific qPCR assays confirmed that variants across campus were representative of the community at large, and at no time did emerging variants first debut on campus. This study demonstrates how WBS can be efficiently applied to locate hotspots of disease activity at a very granular scale, and predict disease burden across large, complex worksites.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring , RNA, Viral
8.
Emerg Microbes Infect ; 12(2): 2233638, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37409382

ABSTRACT

Wastewater-based surveillance is a valuable approach for monitoring COVID-19 at community level. Monitoring SARS-CoV-2 variants of concern (VOC) in wastewater has become increasingly relevant when clinical testing capacity and case-based surveillance are limited. In this study, we ascertained the turnover of six VOC in Alberta wastewater from May 2020 to May 2022. Wastewater samples from nine wastewater treatment plants across Alberta were analysed using VOC-specific RT-qPCR assays. The performance of the RT-qPCR assays in identifying VOC in wastewater was evaluated against next generation sequencing. The relative abundance of each VOC in wastewater was compared to positivity rate in COVID-19 testing. VOC-specific RT-qPCR assays performed comparatively well against next generation sequencing; concordance rates ranged from 89% to 98% for detection of Alpha, Beta, Gamma, Omicron BA.1 and Omicron BA.2, with a slightly lower rate of 85% for Delta (p < 0.01). Elevated relative abundance of Alpha, Delta, Omicron BA.1 and BA.2 were each associated with increased COVID-19 positivity rate. Alpha, Delta and Omicron BA.2 reached 90% relative abundance in wastewater within 80, 111 and 62 days after their initial detection, respectively. Omicron BA.1 increased more rapidly, reaching a 90% relative abundance in wastewater after 35 days. Our results from VOC surveillance in wastewater correspond with clinical observations that Omicron is the VOC with highest disease burden over the shortest period in Alberta to date. The findings suggest that changes in relative abundance of a VOC in wastewater can be used as a supplementary indicator to track and perhaps predict COVID-19 burden in a population.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Wastewater , Wastewater-Based Epidemiological Monitoring , COVID-19 Testing
9.
Viruses ; 15(7)2023 07 13.
Article in English | MEDLINE | ID: mdl-37515227

ABSTRACT

Worldwide, acute gastroenteritis (AGE) is a major cause of morbidity and mortality in children under 5 years of age. Viruses, including norovirus, rotavirus, and enteric adenovirus, are the leading causes of pediatric AGE. In this prospective cohort study, we investigated the viral load and duration of shedding of norovirus, rotavirus, and adenovirus in stool samples collected from 173 children (median age: 15 months) with AGE who presented to emergency departments (EDs) across Canada on Day 0 (day of enrollment), and 5 and 28 days after enrollment. Quantitative RT-qPCR was performed to assess the viral load. On Day 0, norovirus viral load was significantly lower compared to that of rotavirus and adenovirus (p < 0.001). However, on Days 5 and 28, the viral load of norovirus was higher than that of adenovirus and rotavirus (p < 0.05). On Day 28, norovirus was detected in 70% (35/50) of children who submitted stool specimens, while rotavirus and adenovirus were detected in 52.4% (11/24) and 13.6% (3/22) of children (p < 0.001), respectively. Overall, in stool samples of children with AGE who presented to EDs, rotavirus and adenovirus had higher viral loads at presentation compared to norovirus; however, norovirus was shed in stool for the longest duration.


Subject(s)
Adenoviridae Infections , Caliciviridae Infections , Gastroenteritis , Norovirus , Rotavirus Infections , Rotavirus , Child , Humans , Infant , Child, Preschool , Adenoviridae , Prospective Studies , Adenoviridae Infections/epidemiology , Feces
10.
Sci Total Environ ; 900: 165172, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37379934

ABSTRACT

Wastewater-based surveillance (WBS) of infectious diseases is a powerful tool for understanding community COVID-19 disease burden and informing public health policy. The potential of WBS for understanding COVID-19's impact in non-healthcare settings has not been explored to the same degree. Here we examined how SARS-CoV-2 measured from municipal wastewater treatment plants (WWTPs) correlates with workforce absenteeism. SARS-CoV-2 RNA N1 and N2 were quantified three times per week by RT-qPCR in samples collected at three WWTPs servicing Calgary and surrounding areas, Canada (1.4 million residents) between June 2020 and March 2022. Wastewater trends were compared to workforce absenteeism using data from the largest employer in the city (>15,000 staff). Absences were classified as being COVID-19-related, COVID-19-confirmed, and unrelated to COVID-19. Poisson regression was performed to generate a prediction model for COVID-19 absenteeism based on wastewater data. SARS-CoV-2 RNA was detected in 95.5 % (85/89) of weeks assessed. During this period 6592 COVID-19-related absences (1896 confirmed) and 4524 unrelated absences COVID-19 cases were recorded. A generalized linear regression using a Poisson distribution was performed to predict COVID-19-confirmed absences out of the total number of absent employees using wastewater data as a leading indicator (P < 0.0001). The Poisson regression with wastewater as a one-week leading signal has an Akaike information criterion (AIC) of 858, compared to a null model (excluding wastewater predictor) with an AIC of 1895. The likelihood-ratio test comparing the model with wastewater signal with the null model shows statistical significance (P < 0.0001). We also assessed the variation of predictions when the regression model was applied to new data, with the predicted values and corresponding confidence intervals closely tracking actual absenteeism data. Wastewater-based surveillance has the potential to be used by employers to anticipate workforce requirements and optimize human resource allocation in response to trackable respiratory illnesses like COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Absenteeism , Wastewater-Based Epidemiological Monitoring , SARS-CoV-2 , RNA, Viral , Wastewater
11.
JAMA Netw Open ; 6(4): e239050, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37079304

ABSTRACT

Importance: Trends in COVID-19 severe outcomes have significant implications for the health care system and are key to informing public health measures. However, data summarizing trends in severe outcomes among patients hospitalized with COVID-19 in Canada are not well described. Objective: To describe trends in severe outcomes among patients hospitalized with COVID-19 during the first 2 years of the COVID-19 pandemic. Design, Setting, and Participants: Active prospective surveillance in this cohort study was conducted from March 15, 2020, to May 28, 2022, at a sentinel network of 155 acute care hospitals across Canada. Participants included adult (aged ≥18 years) and pediatric (aged 0-17 years) patients hospitalized with laboratory-confirmed COVID-19 at a Canadian Nosocomial Infection Surveillance Program (CNISP)-participating hospital. Exposures: COVID-19 waves, COVID-19 vaccination status, and age group. Main Outcomes and Measures: The CNISP collected weekly aggregate data on the following severe outcomes: hospitalization, admission to an intensive care unit (ICU), receipt of mechanical ventilation, receipt of extracorporeal membrane oxygenation, and all-cause in-hospital death. Results: Among 1 513 065 admissions, the proportion of adult (n = 51 679) and pediatric (n = 4035) patients hospitalized with laboratory-confirmed COVID-19 was highest in waves 5 and 6 of the pandemic compared with waves 1 to 4 (77.3 vs 24.7 per 1000 patient admissions). Despite this, the proportion of patients with positive test results for COVID-19 who were admitted to an ICU, received mechanical ventilation, received extracorporeal membrane oxygenation, and died were each significantly lower in waves 5 and 6 when compared with waves 1 through 4. Admission to the ICU and in-hospital all-cause death rates were significantly higher among those who were unvaccinated against COVID-19 when compared with those who were fully vaccinated (incidence rate ratio, 4.3 and 3.9, respectively) or fully vaccinated with an additional dose (incidence rate ratio, 12.2 and 15.1, respectively). Conclusions and Relevance: The findings of this cohort study of patients hospitalized with laboratory-confirmed COVID-19 suggest that COVID-19 vaccination is important to reduce the burden on the Canadian health care system as well as severe outcomes associated with COVID-19.


Subject(s)
COVID-19 , Cross Infection , Humans , Adult , Child , Adolescent , COVID-19/epidemiology , SARS-CoV-2 , Hospital Mortality , Cohort Studies , Pandemics , Prospective Studies , Cross Infection/epidemiology , COVID-19 Vaccines , Canada/epidemiology
12.
Antimicrob Resist Infect Control ; 12(1): 35, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072874

ABSTRACT

BACKGROUND: Antimicrobial resistance threatens the ability to successfully prevent and treat infections. While hospital benchmarks regarding antimicrobial use (AMU) have been well documented among adult populations, there is less information from among paediatric inpatients. This study presents benchmark rates of antimicrobial use (AMU) for paediatric inpatients in nine Canadian acute-care hospitals. METHODS: Acute-care hospitals participating in the Canadian Nosocomial Infection Surveillance Program submitted annual AMU data from paediatric inpatients from 2017 and 2018. All systemic antimicrobials were included. Data were available for neonatal intensive care units (NICUs), pediatric ICUs (PICUs), and non-ICU wards. Data were analyzed using days of therapy (DOT) per 1000 patient days (DOT/1000pd). RESULTS: Nine hospitals provided paediatric AMU data. Data from seven NICU and PICU wards were included. Overall AMU was 481 (95% CI 409-554) DOT/1000pd. There was high variability in AMU between hospitals. AMU was higher on PICU wards (784 DOT/1000pd) than on non-ICU (494 DOT/1000pd) or NICU wards (333 DOT/1000pd). On non-ICU wards, the antimicrobials with the highest use were cefazolin (66 DOT/1000pd), ceftriaxone (59 DOT/1000pd) and piperacillin-tazobactam (48 DOT/1000pd). On PICU wards, the antimicrobials with the highest use were ceftriaxone (115 DOT/1000pd), piperacillin-tazobactam (115 DOT/1000pd), and cefazolin (111 DOT/1000pd). On NICU wards, the antimicrobials with the highest use were ampicillin (102 DOT/1000pd), gentamicin/tobramycin (78 DOT/1000pd), and cefotaxime (38 DOT/1000pd). CONCLUSIONS: This study represents the largest collection of antimicrobial use data among hospitalized paediatric inpatients in Canada to date. In 2017/2018, overall AMU was 481 DOT/1000pd. National surveillance of AMU among paediatric inpatients is necessary for establishing benchmarks and informing antimicrobial stewardship efforts.


Subject(s)
Anti-Infective Agents , Cross Infection , Infant, Newborn , Adult , Child , Humans , Cross Infection/drug therapy , Cross Infection/epidemiology , Cross Infection/prevention & control , Ceftriaxone , Inpatients , Cefazolin , Canada/epidemiology , Hospitals , Piperacillin , Tazobactam
13.
J Pediatr Gastroenterol Nutr ; 76(2): 160-165, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36705697

ABSTRACT

OBJECTIVES: Pain is common with acute gastroenteritis (AGE) yet little is known about the severity associated with specific enteropathogens. We sought to explore the correlation of pain severity with specific enteropathogens in children with AGE. METHODS: Participants were prospectively recruited by the Alberta Provincial Pediatric EnTeric Infection TEam at 2 pediatric emergency departments (EDs) (December 2014-August 2018). Pain was measured (by child and/or caregiver) using the 11-point Verbal Numerical Rating Scale. RESULTS: We recruited 2686 participants; 46.8% (n = 1256) females, with median age 20.1 months (interquartile range 10.3, 45.3). The mean highest pain scores were 5.5 [standard deviation (SD) 3.0] and 4.2 (SD 2.9) in the 24 hours preceding the ED visit, and in the ED, respectively. Prior to ED visit, the mean highest pain scores with bacterial detection were 6.6 (SD 2.5), compared to 5.5 (SD 2.9) for single virus and 5.5 (SD 3.1) for negative stool tests. In the ED, the mean highest pain scores with bacterial detection were 5.5 (SD 2.7), compared to 4.1 (SD 2.9) for single virus and 4.2 (SD 3.0) for negative stool tests. Using multivariable modeling, factors associated with greater pain severity prior to ED visit included older age, fever, illness duration, number of diarrheal or vomiting episodes in the preceding 24 hours, and respiratory symptoms, but not enteropathogen type. CONCLUSION: Children with AGE experience significant pain, particularly when the episode is associated with the presence of a bacterial enteric pathogen. However, older age and fever appear to influence children's pain experiences more than etiologic pathogens.


Subject(s)
Gastroenteritis , Viruses , Female , Child , Humans , Infant , Gastroenteritis/complications , Gastroenteritis/diagnosis , Diarrhea/etiology , Vomiting/etiology , Vomiting/diagnosis , Pain/etiology , Alberta/epidemiology , Emergency Service, Hospital
14.
J Pediatric Infect Dis Soc ; 12(4): 222-225, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-36718660

ABSTRACT

Clostridioides difficile infection (CDI) among children remains a concerning cause of morbidity in hospital settings. We present epidemiological and molecular trends in healthcare- and community-associated CDI among children in Canadian inpatient and outpatient settings, including those who experienced recurrent infections.


Subject(s)
Clostridioides difficile , Clostridium Infections , Cross Infection , Humans , Child , Canada/epidemiology , Clostridium Infections/epidemiology , Clostridium Infections/etiology , Health Facilities , Delivery of Health Care , Cross Infection/epidemiology
15.
J Environ Sci (China) ; 125: 843-850, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36375966

ABSTRACT

With a unique and large size of testing results of 1,842 samples collected from 12 wastewater treatment plants (WWTP) for 14 months through from low to high prevalence of COVID-19, the sensitivity of RT-qPCR detection of SARS-CoV-2 RNA in wastewater that correspond to the communities was computed by using Probit analysis. This study determined the number of new COVID-19 cases per 100,000 population required to detect SARS-CoV-2 RNA in wastewater at defined probabilities and provided an evidence-based framework of wastewater-based epidemiology surveillance (WBE). Input data were positive and negative test results of SARS-CoV-2 RNA in wastewater samples and the corresponding new COVID-19 case rates per 100,000 population served by each WWTP. The analyses determined that RT-qPCR-based SARS-CoV-2 RNA detection threshold at 50%, 80% and 99% probability required a median of 8 (range: 4-19), 18 (9-43), and 38 (17-97) of new COVID-19 cases /100,000, respectively. Namely, the positive detection rate at 50%, 80% and 99% probability were 0.01%, 0.02%, and 0.04% averagely for new cases in the population. This study improves understanding of the performance of WBE SARS-CoV-2 RNA detection using the large datasets and prolonged study period. Estimated COVID-19 burden at a community level that would result in a positive detection of SARS-CoV-2 in wastewater is critical to support WBE application as a supplementary warning/monitoring system for COVID-19 prevention and control.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Wastewater/analysis , RNA, Viral/genetics , RNA, Viral/analysis , Alberta/epidemiology
16.
J Med Virol ; 95(2): e28442, 2023 02.
Article in English | MEDLINE | ID: mdl-36579780

ABSTRACT

Wastewater-based SARS-CoV-2 surveillance enables unbiased and comprehensive monitoring of defined sewersheds. We performed real-time monitoring of hospital wastewater that differentiated Delta and Omicron variants within total SARS-CoV-2-RNA, enabling correlation to COVID-19 cases from three tertiary-care facilities with >2100 inpatient beds in Calgary, Canada. RNA was extracted from hospital wastewater between August/2021 and January/2022, and SARS-CoV-2 quantified using RT-qPCR. Assays targeting R203M and R203K/G204R established the proportional abundance of Delta and Omicron, respectively. Total and variant-specific SARS-CoV-2 in wastewater was compared to data for variant specific COVID-19 hospitalizations, hospital-acquired infections, and outbreaks. Ninety-six percent (188/196) of wastewater samples were SARS-CoV-2 positive. Total SARS-CoV-2 RNA levels in wastewater increased in tandem with total prevalent cases (Delta plus Omicron). Variant-specific assessments showed this increase to be mainly driven by Omicron. Hospital-acquired cases of COVID-19 were associated with large spikes in wastewater SARS-CoV-2 and levels were significantly increased during outbreaks relative to nonoutbreak periods for total SARS-CoV2, Delta and Omicron. SARS-CoV-2 in hospital wastewater was significantly higher during the Omicron-wave irrespective of outbreaks. Wastewater-based monitoring of SARS-CoV-2 and its variants represents a novel tool for passive COVID-19 infection surveillance, case identification, containment, and potentially to mitigate viral spread in hospitals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , Wastewater , Tertiary Care Centers , Disease Outbreaks
17.
Infect Control Hosp Epidemiol ; 44(6): 971-974, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35708283

ABSTRACT

Cerebrospinal fluid shunt-associated surgical site infection surveillance for 3 months compared to 12 months after surgery captures 83% of cases with no significant differences in patient characteristics, surgery types, or pathogens. A shorter 3-month follow-up can reduce resource use and allow for more timely reporting of healthcare-associated infection rates for hospitals.


Subject(s)
Cross Infection , Surgical Wound Infection , Humans , Surgical Wound Infection/epidemiology , Canada/epidemiology , Cerebrospinal Fluid Shunts/adverse effects , Cross Infection/epidemiology , Hospitals , Retrospective Studies , Cerebrospinal Fluid
18.
Infect Control Hosp Epidemiol ; 44(7): 1180-1183, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35978535

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has placed significant burden on healthcare systems. We compared Clostridioides difficile infection (CDI) epidemiology before and during the pandemic across 71 hospitals participating in the Canadian Nosocomial Infection Surveillance Program. Using an interrupted time series analysis, we showed that CDI rates significantly increased during the COVID-19 pandemic.


Subject(s)
COVID-19 , Clostridium Infections , Cross Infection , Humans , COVID-19/epidemiology , Pandemics , Canada/epidemiology , Clostridium Infections/epidemiology , Cross Infection/epidemiology , Hospitals
19.
Sci Total Environ ; 856(Pt 1): 158964, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36167131

ABSTRACT

Wastewater-based surveillance (WBS) data normalization is an analyte measurement correction that addresses variations resulting from dilution of fecal discharge by non-sanitary sewage, stormwater or groundwater infiltration. No consensus exists on what WBS normalization parameters result in the strongest correlations and lead time between SARS-CoV-2 WBS data and COVID-19 cases. This study compared flow, population size and biomarker normalization impacts on the correlations and lead times for ten communities in twelve sewersheds in Alberta (Canada) between September 2020 and October 2021 (n = 1024) to determine if normalization by Pepper Mild Mottle Virus (PMMoV) provides any advantages compared to other normalization parameters (e.g., flow, reported and dynamic population sizes, BOD, TSS, NH3, TP). PMMoV concentrations (GC/mL) corresponded with plant influent flows and were highest in the urban centres. SARS-CoV-2 target genes E, N1 and N2 were all negatively associated with wastewater influent pH, while PMMoV was positively associated with temperature. Pooled data analysis showed that normalization increased ρ-values by almost 0.1 and was highest for ammonia, TKN and TP followed by PMMoV. Normalization by other parameters weakened associations. None of the differences were statistically significant. Site-specific correlations showed that normalization of SARS-CoV-2 data by PMMoV only improved correlations significantly in two of the twelve systems; neither were large sewersheds or combined sewer systems. In five systems, normalization by traditional wastewater strength parameters and dynamic population estimates improved correlations. Lead time ranged between 1 and 4 days in both pooled and site-specific comparisons. We recommend that WBS researchers and health departments: a) Investigate WWTP influent properties (e.g., pH) in the WBS planning phase and use at least two parallel approaches for normalization only if shown to provide value; b) Explore normalization by wastewater strength parameters and dynamic population size estimates further; and c) Evaluate purchasing an influent flow meter in small communities to support long-term WBS efforts and WWTP management.


Subject(s)
COVID-19 , Wastewater , Humans , SARS-CoV-2 , Alberta , Lead , Wastewater-Based Epidemiological Monitoring
20.
Can Commun Dis Rep ; 49(7-8): 351-357, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-38455882

ABSTRACT

Background: Recent studies have demonstrated the effectiveness of nirmatrelvir-ritonavir in reducing the risk of progression to severe disease among outpatients with mild to moderate coronavirus disease 2019 (COVID-19); however, data are limited regarding the use and role of nirmatrelvir-ritonavir among hospitalized patients. This study describes the use and outcomes of nirmatrelvir-ritonavir among adults hospitalized with COVID-19 in a sentinel network of Canadian acute care hospitals during the Omicron variant phase of the pandemic. Methods: The Canadian Nosocomial Infection Surveillance Program conducts surveillance of hospitalized patients with COVID-19 in acute care hospitals across Canada. Demographic, clinical, treatment and 30-day outcome data were collected by chart review by trained infection control professionals using standardized questionnaires. Results: From January 1 to December 31, 2022, 13% (n=490/3,731) of adult patients (18 years of age and older) hospitalized with COVID-19 in 40 acute care hospitals received nirmatrelvir-ritonavir either at admission or during hospitalization. Most inpatients who received nirmatrelvir-ritonavir, 79% of whom were fully vaccinated, had at least one pre-existing comorbidity (97%) and were of advanced age (median=79 years). Few were admitted to an intensive care unit (2.3%) and among the 490 nirmatrelvir-ritonavir treated inpatients, there were 13 (2.7%) deaths attributable to COVID-19. Conclusion: These findings from a large sentinel network of Canadian acute-care hospitals suggest that nirmatrelvir-ritonavir is being used to treat adult COVID-19 patients at admission who are at risk of progression to severe disease or those who acquired COVID-19 in hospital. Additional research on the efficacy and indications for nirmatrelvir-ritonavir use in hospitalized patients is warranted to inform future policies and guidelines.

SELECTION OF CITATIONS
SEARCH DETAIL
...