Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 10(1): 575-587, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38150627

ABSTRACT

Glioblastoma (GBM) is the deadliest tumor of the central nervous system, with a median survival of less than 15 months. Despite many trials, immune checkpoint-blocking (ICB) therapies using monoclonal antibodies against the PD-1/PD-L1 axis have demonstrated only limited benefits for GBM patients. Currently, the main hurdles in brain tumor therapy include limited drug delivery across the blood-brain barrier (BBB) and the profoundly immune-suppressive microenvironment of GBM. Thus, there is an urgent need for new therapeutics that can cross the BBB and target brain tumors to modulate the immune microenvironment. To this end, we developed an ICB strategy based on the BBB-permeable, 24-subunit human ferritin heavy chain, modifying the ferritin surface with 24 copies of PD-L1-blocking peptides to create ferritin-based ICB nanocages. The PD-L1pep ferritin nanocages first demonstrated their tumor-targeting and antitumor activities in an allograft colon cancer model. Next, we found that these PD-L1pep ferritin nanocages efficiently penetrated the BBB and targeted brain tumors through specific interactions with PD-L1, significantly inhibiting tumor growth in an orthotopic intracranial tumor model. The addition of PD-L1pep ferritin nanocages to triple in vitro cocultures of T cells, GBM cells, and glial cells significantly inhibited PD-1/PD-L1 interactions and restored T-cell activity. Collectively, these findings indicate that ferritin nanocages displaying PD-L1-blocking peptides can overcome the primary hurdle of brain tumor therapy and are, therefore, promising candidates for treating GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Glioblastoma/drug therapy , Glioblastoma/pathology , Ferritins/therapeutic use , Peptides/therapeutic use , Tumor Microenvironment
2.
Theranostics ; 12(18): 7668-7680, 2022.
Article in English | MEDLINE | ID: mdl-36451854

ABSTRACT

Rationale: Neuroinflammation is a primary feature of Alzheimer's disease (AD), for which an increasing number of drugs have been specifically developed. The present study aimed to define the therapeutic impact of a specific subpopulation of T cells that can suppress excessive inflammation in various immune and inflammatory disorders, namely, CD4+CD25+Foxp3+ regulatory T cells (Tregs). Methods: To generate Aß antigen-specific Tregs (Aß+ Tregs), Aß 1-42 peptide was applied in vivo and subsequent in vitro splenocyte culture. After isolating Tregs by magnetic bead based purification method, Aß+ Tregs were adoptively transferred into 3xTg-AD mice via tail vein injection. Therapeutic efficacy was confirmed with behavior test, Western blot, quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry staining (IHC). In vitro suppression assay was performed to evaluate the suppressive activity of Aß+ Tregs using flow cytometry. Thy1.1+ Treg trafficking and distribution was analyzed to explore the infused Tregs migration into specific organs in an antigen-driven manner in AD mice. We further assessed cerebral glucose metabolism using 18F-FDG-PET, an imaging approach for AD biological definition. Subsequently, we evaluated the migration of Aß+ Tregs toward Aß activated microglia using live cell imaging, chemotaxis, antibody blocking and migration assay. Results: We showed that Aß-stimulated Tregs inhibited microglial proinflammatory activity and modulated the microglial phenotype via bystander suppression. Single adoptive transfer of Aß+ Tregs was enough to induce amelioration of cognitive impairments, Aß accumulation, hyper-phosphorylation of tau, and neuroinflammation during AD pathology. Moreover, Aß-specific Tregs effectively inhibited inflammation in primary microglia induced by Aß exposure. It may indicate bystander suppression in which Aß-specific Tregs promote immune tolerance by secreting cytokines to modulate immune responses during neurodegeneration. Conclusions: The administration of Aß antigen-specific regulatory T cells may represent a new cellular therapeutic strategy for AD that acts by modulating the inflammatory status in AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Animals , Mice , Alzheimer Disease/therapy , T-Lymphocytes, Regulatory , Amyloid beta-Peptides , Inflammation/therapy
3.
Antioxidants (Basel) ; 11(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35624742

ABSTRACT

Flooding is harmful to almost all higher plants, including crop species. Most cultivars of the root crop sweet potato are able to tolerate environmental stresses such as drought, high temperature, and high salinity. They are, however, relatively sensitive to flooding stress, which greatly reduces yield and commercial value. Previous transcriptomic analysis of flood-sensitive and flood-resistant sweet potato cultivars identified genes that were likely to contribute to protection against flooding stress, including genes related to ethylene (ET), reactive oxygen species (ROS), and nitric oxide (NO) metabolism. Although each sweet potato cultivar can be classified as either tolerant or sensitive to flooding stress, the molecular mechanisms of flooding resistance in ET, ROS, and NO regulation-mediated responses have not yet been reported. Therefore, this study characterized the regulation of ET, ROS, and NO metabolism in two sweet potato cultivars-one flood-tolerant cultivar and one flood-sensitive cultivar-under early flooding treatment conditions. The expression of ERFVII genes, which are involved in low oxygen signaling, was upregulated in leaves during flooding stress treatments. In addition, levels of respiratory burst oxidase homologs and metallothionein-mediated ROS scavenging were greatly increased in the early stage of flooding in the flood-tolerant sweet potato cultivar compared with the flood-sensitive cultivar. The expression of genes involved in NO biosynthesis and scavenging was also upregulated in the tolerant cultivar. Finally, NO scavenging-related MDHAR expressions and enzymatic activity were higher in the flood-tolerant cultivar than in the flood-sensitive cultivar. These results indicate that, in sweet potato, genes involved in ET, ROS, and NO regulation play an important part in response mechanisms against flooding stress.

4.
Gene ; 833: 146592, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35605748

ABSTRACT

Sweetpotato (Ipomoea batatas L. Lam) is an economically important crop that is cultivated for its storage roots. Storage roots provide a source of valuable nutrients, processed foods, animal feeds, and pigments. Sweetpotato storage roots spoil during post-harvest handling because of wounding, which makes them more susceptible to disease-causing microorganisms. Curing to promote wound healing is a common method to control microbial spoilage during post-harvest storage. However, molecular mechanisms underlying the process of curing in sweetpotato storage roots are unknown. To better understand the biology behind curing, the transcriptome of the sweetpotato cultivar, Pungwonmi, was studied using RNA-seq. Storage roots of sweetpotato were treated at 33 °C (Curing) and 13 °C (Control) for 3 days. RNA-seq data identified 78,781 unigenes and 3,366 differentially expressed genes by over log2 fold change (FC) > 2 and <-2. During curing, DEGs encoded genes related to drought/salt stress responses, phyto-hormones (e.g., auxin, ethylene and jasmonic acid), and proteolysis, were up-regulated, whereas those related to redox state, phyto-hormones (e.g., salicylic acid and brassinosteroids), and lignin and flavonoid biosynthesis were down-regulated. Additionally, among the candidate genes, DEGs encoded genes related to proteolysis and pathogen defense, such as protease inhibitors and lipid transfer proteins, were highly up-regulated during curing and storage. This study provides a valuable resource to further understand the molecular basis of curing-mediated wound healing in sweetpotato storage roots. Moreover, genes revealed in this work could present targets for the development of sweetpotato varieties with improved post-harvest storage characteristics.


Subject(s)
Ipomoea batatas , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Hormones/metabolism , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Transcriptome/genetics , Wound Healing/genetics
5.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216272

ABSTRACT

Triple-negative breast cancer (TNBC) accounts for approximately 10-15% of all breast cancer cases and is characterized by high invasiveness, high metastatic potential, relapse proneness, and poor prognosis. M2-like tumor-associated macrophages (TAMs) contribute to tumorigenesis and are promising targets for inhibiting breast cancer metastasis. Therefore, we investigated whether melittin-conjugated pro-apoptotic peptide (TAMpepK) exerts therapeutic effects on breast cancer metastasis by targeting M2-like TAMs. TAMpepK is composed of M2-like TAM binding peptide (TAMpep) and pro-apoptotic peptide d(KLAKLAK)2 (dKLA). A metastatic mouse model was constructed by injecting 4T1-luc2 cells either orthotopically or via tail vein injection, and tumor burden was quantified using a bioluminescence in vivo imaging system. We found that TAMpepK suppressed lung and lymph node metastases of breast cancer by eliminating M2-like TAMs without affecting the viability of M1-like macrophages and resident macrophages in the orthotopic model. Furthermore, TAMpepK reduced pulmonary seeding and the colonization of tumor cells in the tail vein injection model. The number of CD8+ T cells in contact with TAMs was significantly decreased in tumor nodules treated with TAMpepK, resulting in the functional activation of cytotoxic CD8+ T cells. Taken together, our findings suggest that TAMpepK could be a novel therapeutic agent for the inhibition of breast cancer metastasis by targeting M2-like TAMs.


Subject(s)
Apoptosis/drug effects , Lymphatic Metastasis/drug therapy , Melitten/pharmacology , Peptides/pharmacokinetics , Triple Negative Breast Neoplasms/drug therapy , Tumor-Associated Macrophages/drug effects , Animals , Apoptosis/physiology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Lymphatic Metastasis/pathology , Mice , Mice, Inbred BALB C , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Phagocytosis/drug effects , Phagocytosis/physiology , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
7.
Front Plant Sci ; 12: 764100, 2021.
Article in English | MEDLINE | ID: mdl-34777447

ABSTRACT

Sweetpotato is an emerging food crop that ensures food and nutrition security in the face of climate change. Alpha-linoleic acid (ALA) is one of the key factors affecting plant stress tolerance and is also an essential nutrient in humans. In plants, fatty acid desaturase 8 (FAD8) synthesizes ALA from linoleic acid (LA). Previously, we identified the cold-induced IbFAD8 gene from RNA-seq of sweetpotato tuberous roots stored at low-temperature. In this study, we investigated the effect of IbFAD8 on the low-temperature storage ability and ALA content of the tuberous roots of sweetpotato. Transgenic sweetpotato plants overexpressing IbFAD8 (TF plants) exhibited increased cold and drought stress tolerance and enhanced heat stress susceptibility compared with non-transgenic (NT) plants. The ALA content of the tuberous roots of TF plants (0.19 g/100 g DW) was ca. 3.8-fold higher than that of NT plants (0.05 g/100 g DW), resulting in 8-9-fold increase in the ALA/LA ratio in TF plants. Furthermore, tuberous roots of TF plants showed better low-temperature storage ability compared with NT plants. These results indicate that IbFAD8 is a valuable candidate gene for increasing the ALA content, environmental stress tolerance, and low-temperature storage ability of sweetpotato tuberous roots via molecular breeding.

8.
Plant Physiol Biochem ; 167: 577-585, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34461554

ABSTRACT

Sweetpotato (Ipomoea batatas [L.] Lam) is a prospective food crop that ensures food and nutrition security under the dynamic changes in global climate. Peroxidase (POD) is a multifunctional enzyme involved in diverse plant physiological processes, including stress tolerance and cell wall lignification. Although various POD genes were cloned and functionally characterized in sweetpotato, the role of POD in lignification and low-temperature storage ability of sweetpotato tuberous roots is yet to be investigated. In this study, we isolated the cold-induced lignin forming peroxidase (IbLfp) gene of sweetpotato, and analyzed its physiological functions. IbLfp showed more predominant expression in fibrous roots than in other tissues. Moreover, IbLfp expression was up-regulated in leaves and roots under cold stress, and was altered by other abiotic stresses. Tuberous roots of transgenic sweetpotato lines overexpressing IbLfp (LP lines) showed improved tolerance to low temperature, with lower malondialdehyde and hydrogen peroxide contents than non-transgenic sweetpotato plants under cold stress. The enhanced cold tolerance of LP lines could be attributed to the increased basal activity of POD, which is involved in reactive oxygen species (ROS) scavenging. Moreover, greater accumulation of lignin could also contribute to the enhanced cold tolerance of LP lines, as lignin acts as a protective barrier against invading pathogens, which is a secondary symptom of chilling injury in sweetpotato. Overall, the results of this study enhance our understanding of the function of POD in low-temperature storage of sweetpotato tuberous roots.


Subject(s)
Ipomoea batatas , Cold-Shock Response , Gene Expression Regulation, Plant , Ipomoea batatas/genetics , Peroxidases , Plants, Genetically Modified , Prospective Studies , Temperature
9.
Plant Physiol Biochem ; 167: 420-429, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34411781

ABSTRACT

Tocopherols are lipid-soluble compounds regarded as vitamin E compounds and they function as antioxidants in scavenging lipid peroxyl radicals and quenching reactive oxygen species (ROS). In our previous studies, we isolated five tocopherol biosynthesis genes from sweetpotato (Ipomoea batatas [L.] Lam) plants including 4-hydroxyphenylpyruvate dioxygenase (IbHPPD). HPPD is the first regulatory enzyme in vitamin E biosynthesis and serves to catalyze in the first steps α-tocopherol and plastoquinone biosynthesis by converting 4-hydroxyphenylpyruvate (HPP) to homogentisic acid (HGA). In this study, we generated transgenic sweetpotato plants overexpressing IbHPPD under the control of cauliflower mosaic virus (CaMV) 35S promoter (referred to as HP plants) via Agrobacterium-mediated transformation to understand the function of IbHPPD in sweetpotato. Three transgenic lines (HP3, HP14 and HP15) with high transcript levels of IbHPPD were selected for further characterization. Compared with non-transgenic (NT) plants, HP plants exhibited enhanced tolerance to multiple environmental stresses, including salt, drought, and oxidative stresses. In addition, HP plants showed increased tolerance to the herbicide sulcotrione, which is involved in the inhibition of the HPPD. Interestingly, after stress treatments, HP plants also showed higher abscisic acid (ABA) contents than NT plants. Under dehydrated condition, HP plants displayed an elevated α-tocopherol content to 19-27% in leaves compared with NT plants. These results indicate that increased abiotic stress tolerance in HP plants is related to inducing enhancement of α-tocopherol and ABA contents.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Ipomoea batatas , 4-Hydroxyphenylpyruvate Dioxygenase/genetics , Droughts , Gene Expression Regulation, Plant , Ipomoea batatas/genetics , Plants, Genetically Modified/genetics , Salt Tolerance , Stress, Physiological/genetics
10.
Plant Physiol Biochem ; 166: 549-557, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34174660

ABSTRACT

Lignin is associated with cell wall rigidity, water and solute transport, and resistance to diverse stresses in plants. Lignin consists of polymerized monolignols (p-coumaryl, coniferyl, and sinapyl alcohols), which are synthesized by cinnamyl alcohol dehydrogenase (CAD) in the phenylpropanoid pathway. We previously investigated cold-induced IbCAD1 expression by transcriptome profiling of cold-stored tuberous roots of sweetpotato (Ipomoea batatas [L.] Lam). In this study, we confirmed that IbCAD1 expression levels depended on the sweetpotato root type and were strongly induced by several abiotic stresses. We generated transgenic sweetpotato plants overexpressing IbCAD1 (TC plants) to investigate CAD1 physiological functions in sweetpotato. TC plants displayed lower root weights and lower ratios of tuberous roots to pencil roots than non-transgenic (NT) plants. The lignin contents in tuberous roots of NT and TC plants differed slightly, but these differences were not significant. By contrast, monolignol levels and syringyl (S)/guaiacyl (G) ratios were higher in TC plants than NT plants, primarily owing to syringyl unit accumulation. Tuberous roots of TC plants displayed enhanced low-temperature (4 °C) storage with lower malondialdehyde and H2O2 contents than NT plants. We propose that high monolignol levels in TC tuberous roots served as substrates for increased peroxidase activity, thereby enhancing antioxidation capacity against cold stress-induced reactive oxygen species. Increased monolignol contents and/or increased S/G ratios might contribute to pathogen-induced stress tolerance as a secondary chilling-damage response in sweetpotato. These results provide novel information about CAD1 function in cold stress tolerance and root formation mechanisms in sweetpotato.


Subject(s)
Ipomoea batatas , Cold-Shock Response , Gene Expression Regulation, Plant , Hydrogen Peroxide , Ipomoea batatas/genetics , Phenotype , Plants, Genetically Modified , Temperature
11.
Int J Obes (Lond) ; 45(8): 1656-1667, 2021 08.
Article in English | MEDLINE | ID: mdl-33947969

ABSTRACT

BACKGROUND/OBJECTIVES: Adipose tissue macrophages (ATMs) exist in either the M1 or M2 form. The anti-inflammatory M2 ATMs accumulate in lean individuals, whereas the pro-inflammatory M1 ATMs accumulate in obese individuals. Bee venom phospholipase A2 (bvPLA2), a major component in honeybee (Apis mellifera) venom, exerts potent anti-inflammatory effects via interactions with regulatory T cells (Treg) and macrophages. This study investigated the effects of bvPLA2 on a high-fat diet (HFD)-induced obesity in mice. SUBJECTS/METHODS: For in vivo experiments, male C57BL/6, CD206-deficient, and Treg-depleted mice models were fed either a normal diet 41.86 kJ (ND, 10 kcal% fat) or high-fat diet 251.16 kJ (HFD, 60 kcal% fat). Each group was i.p. injected with PBS or bvPLA2 (0.5 mg/kg) every 3 days for 11 weeks. Body weight and food intake were measured weekly. Histological changes in the white adipose tissue (WAT), liver, and kidney as well as the immune phenotypes of the WAT were examined. Immune cells, cytokines, and lipid profiles were also evaluated. The direct effects of bvPLA2 on 3T3-L1 pre-adipocytes and bone marrow-derived macrophages were measured in vitro. RESULTS: bvPLA2 markedly decreased bodyweight in HFD-fed mice. bvPLA2 treatment also decreased lipid accumulation in the liver and reduced kidney inflammation in the mice. It was confirmed that bvPLA2 exerted immunomodulatory effects through the CD206 receptor. In addition, bvPLA2 decreased M1 ATM and alleviated the M1/M2 imbalance in vivo. However, bvPLA2 did not directly inhibit adipogenesis in the 3T3-L1 adipose cells in vitro. CONCLUSIONS: bvPLA2 is a potential therapeutic strategy for the management of obesity by regulating adipose tissue macrophage homeostasis.


Subject(s)
Adipose Tissue/cytology , Bee Venoms , Macrophages/drug effects , Obesity/metabolism , Phospholipases A2 , 3T3-L1 Cells , Adipose Tissue, White/drug effects , Animals , Bee Venoms/enzymology , Bee Venoms/pharmacology , Diet, High-Fat/adverse effects , Male , Mice , Mice, Inbred C57BL , Phospholipases A2/metabolism , Phospholipases A2/pharmacology
12.
Biomaterials ; 270: 120685, 2021 03.
Article in English | MEDLINE | ID: mdl-33524811

ABSTRACT

The interaction of programmed cell death 1 ligand 1 (PD-L1) with its receptor, programmed cell death 1 (PD-1), inhibits T cell responses. Monoclonal antibodies that block this interaction have been shown effective as immunotherapy. However, only a subset of cancers exhibits a durable response to PD-1/PD-L1 blockade. Moreover, antibody-based immune checkpoint blockade is costly and is occasionally accompanied by systemic side effects. To overcome these limitations of antibody-based immune checkpoint blockade, an immune checkpoint-blocking ferritin nanocage displaying 24 PD-L1 binding peptides (PD-L1pep1) on its surface was designed and constructed. These ferritin nanocages displaying PD-L1pep1 (PpNF) specifically bind to PD-L1 expressed on cancer cells or to purified PD-L1 with a ~30 nM binding affinity. The addition of PpNF to co-cultures of T cells and cancer cells inhibited PD-1/PD-L1 interactions and restored T cell activities. In a mouse model of syngeneic colon cancer, PpNF specifically targeted tumors and showed antitumor activity. Moreover, PpNF nanocages encapsulating the chemotherapeutic drug doxorubicin had more potent antitumor activity than a monoclonal antibody against PD-L1. These results demonstrate that ferritin nanocages displaying surface PD-L1pep1 can be efficiently applied for immunotherapy, especially when encapsulating small chemotherapeutic drugs. These nanocages may have promise as an immunotherapeutic nanomedicine against various solid tumors.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Antibodies, Monoclonal , Antineoplastic Agents/therapeutic use , Immunotherapy , Mice , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor
13.
Micromachines (Basel) ; 12(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33401505

ABSTRACT

Typical pneumatic soft micro actuators can be manufactured without using heavy driving components such as pumps and power supplies by adopting an independent battery-powered mechanism. In this study, a thermopneumatically operated soft micro bellows actuator was manufactured, and the standalone operation of the actuator was experimentally validated. Thermopneumatic actuation is based on heating a sealed cavity inside the elastomer of the actuator to raise the pressure, leading to deflection of the elastomer. The bellows actuator was fabricated by casting polydimethylsiloxane (PDMS) using the 3D-printed soluble mold technique to prevent leakage, which is inherent in conventional soft lithography due to the bonding of individual layers. The heater, manufactured separately using winding copper wire, was inserted into the cavity of the bellows actuator, which together formed the thermopneumatic actuator. The 3D coil heater and bellows allowed immediate heat transfer and free movement in the intended direction, which is unachievable for conventional microfabrication. The fabricated actuator produced a stroke of 2184 µm, equivalent to 62% of the body, and exerted a force of 90.2 mN at a voltage of 0.55 V. A system in which the thermopneumatic actuator was driven by alkaline batteries and a control circuit also demonstrated a repetitive standalone operation.

14.
Antioxidants (Basel) ; 10(1)2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33406723

ABSTRACT

Carotenoids function as photosynthetic accessory pigments, antioxidants, and vitamin A precursors. We recently showed that transgenic sweetpotato calli overexpressing the mutant sweetpotato (Ipomoea batatas [L.] Lam) Orange gene (IbOr-R96H), which carries a single nucleotide polymorphism responsible for Arg to His substitution at amino acid position 96, exhibited dramatically higher carotenoid content and abiotic stress tolerance than calli overexpressing the wild-type IbOr gene (IbOr-WT). In this study, we generated transgenic sweetpotato plants overexpressing IbOr-R96H under the control of the cauliflower mosaic virus (CaMV) 35S promoter via Agrobacterium-mediated transformation. The total carotenoid contents of IbOr-R96H storage roots (light-orange flesh) and IbOr-WT storage roots (light-yellow flesh) were 5.4-19.6 and 3.2-fold higher, respectively, than those of non-transgenic (NT) storage roots (white flesh). The ß-carotene content of IbOr-R96H storage roots was up to 186.2-fold higher than that of NT storage roots. In addition, IbOr-R96H plants showed greater tolerance to heat stress (47 °C) than NT and IbOr-WT plants, possibly because of higher DPPH radical scavenging activity and ABA contents. These results indicate that IbOr-R96H is a promising strategy for developing new sweetpotato cultivars with improved carotenoid contents and heat stress tolerance.

15.
Int J Stem Cells ; 14(1): 94-102, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33377452

ABSTRACT

BACKGROUND AND OBJECTIVES: Human mesenchymal stem cell-conditioned medium (MSC-CM) is produced using mesenchymal stem cell culture technology and has various benefits for the skin, including wrinkle removal, skin regeneration, and increased antioxidant activity. Its popularity is thus increasing in the field of functional cosmetics. METHODS AND RESULTS: In this study, we analyzed the effects of fetal bovine serum-supplemented MSC-CM (FBSMSC-CM) and human platelet lysate-supplemented MSC-CM (hPL-MSC-CM) on skin rejuvenation characteristics. We found that the concentrations of important growth factors (VEGF, TGF-ß1, and HGF) and secretory proteins for skin regeneration were significantly higher in hPL-MSC-CM than in FBS-MSC-CM. Furthermore, the capacity for inducing proliferation of human dermal fibroblast (HDF) and keratinocytes, the migration ability of HDF, extracellular matrix (ECM) production such as collagen and elastin was higher in hPL-MSC-CM than that in FBSMSC-CM. CONCLUSIONS: These results support the usefulness and high economic value of hPL-MSC-CM as an alternative source of FBS-MSC-CM in the cosmetic industry for skin rejuvenation.

16.
Int J Stem Cells ; 14(1): 103-111, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33377453

ABSTRACT

BACKGROUND AND OBJECTIVES: Mesenchymal stem cells (MSCs) have immense therapeutic potential for treating intractable and immune diseases. They also have applications in regenerative medicine in which distinct treatments do not exist. Thus, MSCs are gaining attention as important raw materials in the field of cell therapy. Importantly, the number of MSCs in the bone marrow is limited and they are present only in small quantities. Therefore, mass production of MSCs through long-term culture is necessary to use them in cell therapy. However, MSCs undergo cellular senescence through repeated passages during mass production. In this study, we explored methods to prolong the limited lifetime of MSCs by culturing them with different seeding densities. METHODS AND RESULTS: We observed that in long-term cultures, low-density (LD, 50 cells/cm2) MSCs showed higher population doubling level, leading to greater fold increase, than high-density (HD, 4,000 cells/cm2) MSCs. LD-MSCs suppressed the expression of aging-related genes. We also showed that reactive oxygen species (ROS) were decreased in LD-MSCs compared to that in HD-MSCs. Further, proliferation potential increased when ROS were inhibited in HD-MSCs. CONCLUSIONS: The results in this study suggest that MSC senescence can be delayed and that life span can be extended by controlling cell density in vitro. These results can be used as important data for the mass production of stem cell therapeutic products.

17.
Plant Physiol Biochem ; 155: 243-251, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32781274

ABSTRACT

Sweetpotato [Ipomoea batatas (L.) Lam] serves as a sustainable food source and ensures nutrition security in the face of climate change. Recently, farmers have developed increased interest in replacing rice with sweetpotato in paddy fields for higher income. However, sweetpotato is more susceptible to flooding stress than other abiotic stresses including drought and salinity. Here, we selected flooding tolerant sweetpotato cultivars based on biochemical characterization. Young seedlings of 33 sweetpotato cultivars were subjected to flooding stress for 20 days, and Yeonjami (YJM) was identified as the most flooding tolerant sweetpotato cultivar. Plant growth and biochemical characteristics of YJM were compared with those of Jeonmi (JM), a flooding sensitive sweetpotato cultivar. Under flooding stress, YJM showed higher content of chlorophyll and lower inhibition of plant height and fibrous root length than JM. Biochemical characterization revealed that although malondialdehyde and hydrogen peroxide contents were increased in fibrous roots of both cultivars, the amount of increase was 4-fold lower in YJM than in JM. Additionally, leaves of YJM showed higher ascorbate peroxidase activity than those of JM under flooding stress. Our results suggest that high membrane stability and antioxidant capacity are important flooding tolerance factors in sweetpotato. Furthermore, several flooding tolerance-related genes involved in starch and sucrose metabolism, fermentation, and cell wall loosening showed earlier induction and higher transcript levels in YJM leaves and fibrous roots than in JM tissues under flooding stress. Thus, phenotypic and biochemical characterization suggests that YJM could be used as a flooding tolerant sweetpotato cultivar.


Subject(s)
Floods , Ipomoea batatas/genetics , Stress, Physiological , Gene Expression Regulation, Plant , Ipomoea batatas/physiology , Plant Breeding
18.
Integr Cancer Ther ; 19: 1534735420924711, 2020.
Article in English | MEDLINE | ID: mdl-32590912

ABSTRACT

PM014 (HL301) is a standardized herbal mixture derived from a traditional Korean medicine, Chung-Sang-Bo-Ha-Tang. Previously, we reported that PM014 treatment significantly suppressed pulmonary fibrosis, one of the frequent adverse effects of anticancer therapy in lung cancer. Before the clinical application of PM014 in anticancer therapy, the safety and efficacy of PM014 in combination with conventional anticancer drugs should be addressed to determine whether PM014 can be used in lung cancer. Lewis lung cancer-bearing mice were injected with 10 mg/kg of cisplatin or paclitaxel on day 5. Starting on day 7, the mice were administered 200 mg/kg PM014 every 2 days. On day 15, all mice were assessed by biochemical and histological analyses. PM014 did not block the antitumor activity of cisplatin and paclitaxel. Coadministration of PM014 and antitumor agents did not elevate the aspartate transaminase/alanine transaminase ratio or the blood urea nitrogen/creatinine ratio. Histopathological analysis also showed that PM014 did not induce hepatic or renal injury. Moreover, PM014 had no apparent inhibitory effects on drug metabolizing enzymes, indicating that PM014 did not alter the pharmacokinetics of chemotherapeutic drugs. Overall, these data show the safety and compatibility of combination therapy of PM014 and chemotherapies for the treatment of lung cancer.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols , Cisplatin/adverse effects , Disease Models, Animal , Lung Neoplasms/drug therapy , Mice , Paclitaxel/adverse effects
19.
Hippocampus ; 30(9): 926-937, 2020 09.
Article in English | MEDLINE | ID: mdl-32275344

ABSTRACT

The hippocampus and dorsal striatum are both associated with temporal processing, but they are thought to play distinct roles. The hippocampus has been reported to contribute to storing temporal structure of events in memory, whereas the striatum contributes to temporal motor preparation and reward anticipation. Here, we asked whether the striatum cooperates with the hippocampus in processing the temporal context of memorized visual associations. In our task, participants were trained to implicitly form temporal expectations for one of two possible time intervals associated to specific cue-target associations, and subsequently were scanned using ultra-high-field 7T functional magnetic resonance imaging. During scanning, learned temporal expectations could be violated when the pairs were presented at either the associated or not-associated time intervals. When temporal expectations were met during testing trials, activity in left and right hippocampal subfields and right putamen decreased, compared to when temporal expectations were not met. Further, psycho-physiological interactions showed that functional connectivity between left hippocampal subfields and caudate decreased when temporal expectations were not met. Our results indicate that the hippocampus and striatum cooperate to process implicit temporal expectation from mnemonic associations. Our findings provide further support for a hippocampal-striatal network in temporal associative processing.


Subject(s)
Association Learning/physiology , Corpus Striatum/physiology , Hippocampus/physiology , Memory/physiology , Motivation/physiology , Nerve Net/physiology , Adult , Corpus Striatum/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/diagnostic imaging , Time Factors , Young Adult
20.
Front Immunol ; 11: 77, 2020.
Article in English | MEDLINE | ID: mdl-32117241

ABSTRACT

Cancer chemotherapy induces sarcopenia, which is a rapid loss of muscle mass that directly restricts daily activities and leads to poor quality of life and increased mortality. Although hormone-related therapies have been used to improve appetite and nutritional status, current treatments are considered palliative. Thus, the protection of skeletal muscle loss without adverse effects is essential to allow the maintenance of chemotherapy in cancer patients. Magnolol from Magnolia officinalis has several pharmacological effects including anti-cancer and anti-inflammatory activities, but the protection from muscle atrophy is not well-understood. In the present study, we investigated the effects of magnolol on muscle wasting and macrophage subtypes in a cisplatin-induced sarcopenia mouse model. We showed that magnolol significantly attenuated the body weight and the muscle loss induced by cisplatin injection. The diameter of the tibialis anterior muscle was markedly increased after magnolol treatment in cisplatin-treated mice. Importantly, magnolol increased macrophage infiltration into skeletal muscle while not affecting proliferation of macrophages. Magnolol attenuated the imbalance of M1/M2c macrophages by increasing CD206+CD163+ M2c tissue reparative macrophages. Further, magnolol increased insulin-like growth factor (IGF)-1 expression. This effect was also observed in bone marrow-derived macrophages upon magnolol treatment. Taken together, magnolol may be a promising chemoprotective agent for the prevention of muscle atrophy through the upregulating M2c macrophages, which are a major source of IGF-1.


Subject(s)
Biphenyl Compounds/pharmacology , Lignans/pharmacology , Macrophage Activation/drug effects , Muscular Atrophy/chemically induced , Muscular Atrophy/prevention & control , Animals , Antineoplastic Agents/toxicity , Carcinoma, Lewis Lung , Cisplatin/toxicity , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...