Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Trop Med Infect Dis ; 3(2)2018 Jun 15.
Article in English | MEDLINE | ID: mdl-30274462

ABSTRACT

The venom proteome of Siamese Russell's viper from Taiwan, alongside complementary in vivo lethality neutralization assay and in vitro third-generation antivenomics assessment of the preclinical efficacy of the homologous antivenom manufactured in Taiwan CDC's Vaccine Center, are here reported. Taiwanese Russell's viper venom proteome comprised 25 distinct gene products, with the heterodimeric PLA2 viperotoxin-F representing the most abundant toxin (47.5% of total venom proteome). Coagulation FV-activating serine proteinase (RVV-V, 14%), the PIV-SVMP activator of FX (RVV-FX, 8.5%), and less abundant toxins from nine protein families, make up its venom proteome. Venom composition-pathology correlations of D. siamensis envenomings in Taiwan are discussed. The lethal effect of Taiwanese D. siamensis venom was 0.47 mg/g mouse. Antivenomics-guided assessment of the toxin recognition landscape of the Taiwanese Russell's viper antivenom, in conjunction with complementary in vivo neutralization analysis, informed the antivenom's maximal toxin immunorecognition ability (14 mg total venom proteins/vial), neutralization capacity (6.5 mg venom/vial), and relative content of lethality neutralizing antibodies (46.5% of the toxin-binding F(ab')2 antibodies). The antivenomics analysis also revealed suboptimal aspects of the CDC-Taiwan antivenom. Strategies to improve them are suggested.

2.
J Proteomics ; 75(18): 5628-45, 2012 Oct 22.
Article in English | MEDLINE | ID: mdl-22906718

ABSTRACT

The proteomes of the venoms of the snakes Viridovipera stejnegeri and Protobothrops mucrosquamatus from Taiwan were characterized by N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of in-gel generated tryptic peptides. Proteins belonging to the following toxin classes were identified: metalloproteinase, phospholipase A(2) (PLA(2)), serine proteinase, C-type lectin-like, CRISP, l-amino acid oxidase, disintegrin, and peptides (vasoactive and inhibitors of SVMPs). Nine horses were immunized with a mixture of these venoms. All horses developed a satisfactory immune response against lethality of the venom of V. stejnegeri, whereas only three horses reached the accepted neutralizing potency against the venom of P. mucrosquamatus. Antivenoms were prepared from pools of 'good responder' (GR) and 'poor responder' (PR) horses and compared by antivenomics and neutralization tests. A similar neutralizing response was observed between the GR and PR antivenoms against the venom of V. stejnegeri, whereas antivenom from PR had a lower neutralizing activity against effects of P. mucrosquamatus venom than antivenom from GR. The low potency of the plasma of some horses against this venom is a consequence of the low immunogenicity of the neurotoxic PLA(2) trimucrotoxin. Our results provide clues for innovating the immunization scheme to generate improved antivenoms.


Subject(s)
Antivenins/immunology , Horses/immunology , Viper Venoms/chemistry , Amino Acid Sequence , Animals , Humans , Mice , Neutralization Tests , Proteome/analysis , Taiwan , Viper Venoms/immunology , Viperidae
SELECTION OF CITATIONS
SEARCH DETAIL