Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 222(Pt B): 2258-2269, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36209912

ABSTRACT

Celiac disease (CD) is a human autoimmune disease triggered by toxic gluten peptides. Recently, oral enzyme therapy has been proposed to ameliorate the health condition of CD patients based on the concept of removing pepsin-insensitive gluten-derived pro-immunogenic peptides. A Burkholderia peptidase, Bga1903, with promising gluten-degrading activity was characterized previously. Here, we report the crystal structure of Bga1903, in which the core has a α/ß/α fold featured with a twisted six-stranded parallel ß-sheet sandwiched between two layers of α-helices. The mutations at the substrate-binding pocket that might enhance the peptidase's affinity toward tetrapeptide PQPQ were predicted by FoldX. Accordingly, four single-substitution mutants, G351A, E380L, S386F, and S387L, were created. The specificity constant (kcat/KM) of wild type toward chromogenic peptidyl substrates Z-HPK-pNA, Z-HPQ-pNA, Z-HPL-pNA, and Z-QPQ-pNA are 30.2, 7.9, 3.3, and 0.79 s-1·mM-1, respectively, indicating that the QPQ motif, which frequently occurs in pro-immunogenic peptides, is not favorable. Among the mutants, E380L loses the hydrolytic activity toward Z-HPK-pNA, suggesting a critical role of E380 in preferring a lysine residue at the P1 position. S387L shows a 17-fold increase in the specificity constant toward Z-QPQ-pNA and hydrolyzes the pro-immunogenic peptides more efficiently than the wild-type peptidase.


Subject(s)
Burkholderia , Celiac Disease , Humans , Glutens/metabolism , Peptide Hydrolases , Burkholderia/metabolism , Peptides/chemistry , Binding Sites
2.
Biomolecules ; 11(3)2021 03 17.
Article in English | MEDLINE | ID: mdl-33802942

ABSTRACT

Celiac disease is an autoimmune disorder triggered by toxic peptides derived from incompletely digested glutens in the stomach. Peptidases that can digest the toxic peptides may formulate an oral enzyme therapy to improve the patients' health condition. Bga1903 is a serine endopeptidase secreted by Burkholderia gladioli. The preproprotein of Bga1903 consists of an N-terminal signal peptide, a propeptide region, and an enzymatic domain that belongs to the S8 subfamily. Bga1903 could be secreted into the culture medium when it was expressed in E. coli. The purified Bga1903 is capable of hydrolyzing the gluten-derived toxic peptides, such as the 33- and 26-mer peptides, with the preference for the peptide bonds at the carbonyl site of glutamine (P1 position). The kinetic assay of Bga1903 toward the chromogenic substrate Z-HPQ-pNA at 37 °C, pH 7.0, suggests that the values of Km and kcat are 0.44 ± 0.1 mM and 17.8 ± 0.4 s-1, respectively. The addition of Bga1903 in the wort during the fermentation step of beer could help in making gluten-free beer. In summary, Bga1903 is usable to reduce the gluten content in processed foods and represents a good candidate for protein engineering/modification aimed to efficiently digest the gluten at the gastric condition.


Subject(s)
Bacterial Proteins/metabolism , Burkholderia gladioli/enzymology , Celiac Disease/metabolism , Glutens/metabolism , Peptides/metabolism , Serine Proteases/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Beer , Burkholderia gladioli/genetics , Celiac Disease/immunology , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Fermentation , Gliadin/immunology , Gliadin/metabolism , Glutens/immunology , Humans , Hydrolysis , Peptides/immunology , Recombinant Proteins/metabolism , Serine Proteases/genetics , Substrate Specificity
3.
Molecules ; 26(3)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572680

ABSTRACT

A Burkholderia gladioli strain, named BBB-01, was isolated from rice shoots based on the confrontation plate assay activity against several plant pathogenic fungi. The genome of this bacterial strain consists of two circular chromosomes and one plasmid with 8,201,484 base pairs in total. Pangenome analysis of 23 B. gladioli strains suggests that B. gladioli BBB-01 has the closest evolutionary relationship to B. gladioli pv. gladioli and B. gladioli pv. agaricicola. B. gladioli BBB-01 emitted dimethyl disulfide and 2,5-dimethylfuran when it was cultivated in lysogeny broth and potato dextrose broth, respectively. Dimethyl disulfide is a well-known pesticide, while the bioactivity of 2,5-dimethylfuran has not been reported. In this study, the inhibition activity of the vapor of these two compounds was examined against phytopathogenic fungi, including Magnaporthe oryzae, Gibberella fujikuroi, Sarocladium oryzae, Phellinus noxius and Colletotrichumfructicola, and human pathogen Candida albicans. In general, 2,5-dimethylfuran is more potent than dimethyl disulfide in suppressing the growth of the tested fungi, suggesting that 2,5-dimethylfuran is a potential fumigant to control plant fungal disease.


Subject(s)
Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Burkholderia gladioli/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control
4.
Viruses ; 11(11)2019 11 08.
Article in English | MEDLINE | ID: mdl-31717440

ABSTRACT

Thermobifida fusca is of biotechnological interest due to its ability to produce an array of plant cell wall hydrolytic enzymes. Nonetheless, only one T. fusca bacteriophage with genome information has been reported to date. This study was aimed at discovering more relevant bacteriophages to expand the existing knowledge of phage diversity for this host species. With this end in view, a thermostable T. fusca bacteriophage P318, which belongs to the Siphoviridae family, was isolated and characterized. P318 has a double-stranded DNA genome of 48,045 base pairs with 3'-extended COS ends, on which 52 putative ORFs are organized into clusters responsible for the order of genome replication, virion morphogenesis, and the regulation of the lytic/lysogenic cycle. In comparison with T. fusca and the previously discovered bacteriophage P1312, P318 has a much lower G+C content in its genome except at the region encompassing ORF42, which produced a protein with unknown function. P1312 and P318 share very few similarities in their genomes except for the regions encompassing ORF42 of P318 and ORF51 of P1312 that are homologous. Thus, acquisition of ORF42 by lateral gene transfer might be an important step in the evolution of P318.


Subject(s)
Actinobacteria/virology , Bacteriophages/isolation & purification , Siphoviridae/isolation & purification , Bacteriophages/genetics , DNA, Viral , Gene Ontology , Gene Transfer, Horizontal , Genome, Viral/physiology , Phylogeny , Siphoviridae/genetics , Thermobifida , Viral Proteins/genetics
5.
J Virol ; 93(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31511381

ABSTRACT

Bamboo mosaic virus (BaMV), a member of the Potexvirus genus, has a monopartite positive-strand RNA genome on which five open reading frames (ORFs) are organized. ORF1 encodes a 155-kDa nonstructural protein (REPBaMV) that plays a core function in replication/transcription of the viral genome. To find out cellular factors modulating the replication efficiency of BaMV, a putative REPBaMV-associated protein complex from Nicotiana benthamiana leaf was isolated on an SDS-PAGE gel, and a few proteins preferentially associated with REPBaMV were identified by tandem mass spectrometry. Among them, proliferating cell nuclear antigen (PCNA) was particularly noted. Overexpression of PCNA strongly suppressed the accumulation of BaMV coat protein and RNAs in leaf protoplasts. In addition, PCNA exhibited an inhibitory effect on BaMV polymerase activity. A pulldown assay confirmed a binding capability of PCNA toward BaMV genomic RNA. Mutations at D41 or F114 residues, which are critical for PCNA to function in nuclear DNA replication and repair, disabled PCNA from binding BaMV genomic RNA as well as suppressing BaMV replication. This suggests that PCNA bound to the viral RNA may interfere with the formation of a potent replication complex or block the replication process. Interestingly, BaMV is almost invisible in the newly emerging leaves where PCNA is actively expressed. Accordingly, PCNA is probably one of the factors restricting the proliferation of BaMV in young leaves. Foxtail mosaic virus and Potato virus X were also suppressed by PCNA in the protoplast experiment, suggesting a general inhibitory effect of PCNA on the replication of potexviruses.IMPORTANCE Knowing the dynamic interplay between plant RNA viruses and their host is a basic step toward first understanding how the viruses survive the plant defense mechanisms and second gaining knowledge of pathogenic control in the field. This study found that plant proliferating cell nuclear antigen (PCNA) imposes a strong inhibition on the replication of several potexviruses, including Bamboo mosaic virus, Foxtail mosaic virus, and Potato virus X Based on the tests on Bamboo mosaic virus, PCNA is able to bind the viral genomic RNA, and this binding is a prerequisite for the protein to suppress the virus replication. This study also suggests that PCNA plays an important role in restricting the proliferation of potexviruses in the rapidly dividing tissues of plants.


Subject(s)
Potexvirus/metabolism , Proliferating Cell Nuclear Antigen/genetics , Viral Nonstructural Proteins/metabolism , 3' Untranslated Regions/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genome, Viral/genetics , Plant Leaves/virology , Plant Proteins/genetics , Potexvirus/genetics , Proliferating Cell Nuclear Antigen/metabolism , Protein Binding , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Nicotiana/metabolism , Nicotiana/virology , Viral Nonstructural Proteins/genetics , Viral Proteins/metabolism , Virus Replication/physiology
6.
Mol Plant Pathol ; 19(10): 2319-2332, 2018 10.
Article in English | MEDLINE | ID: mdl-29806182

ABSTRACT

In plants, the mitogen-activated protein kinase (MAPK) cascades are the central signaling pathways of the complicated defense network triggered by the perception of pathogen-associated molecular patterns to repel pathogens. The Arabidopsis thaliana MAPK phosphatase 1 (AtMKP1) negatively regulates the activation of MAPKs. Recently, the AtMKP1 homolog of Nicotiana benthamiana (NbMKP1) was found in association with the Bamboo mosaic virus (BaMV) replication complex. This study aimed to investigate the role of NbMKP1 in BaMV multiplication in N. benthamiana. Silencing of NbMKP1 increased accumulations of the BaMV-encoded proteins and the viral genomic RNA, although the same condition reduced the infectivity of Pseudomonas syringae pv. tomato DC3000 in N. benthamiana. On the other hand, overexpression of NbMKP1 decreased the BaMV coat protein accumulation in a phosphatase activity-dependent manner in protoplasts. NbMKP1 also negatively affected the in vitro RNA polymerase activity of the BaMV replication complex. Collectively, the activity of NbMKP1 seems to reduce BaMV multiplication, inconsistent with the negatively regulatory role of MKP1 in MAPK cascades in terms of warding off fungal and bacterial invasion. In addition, silencing of NbMKP1 increased the accumulation of Foxtail mosaic virus but decreased Potato virus X. The discrepant effects exerted by NbMKP1 on different pathogens foresee the difficulty to develop plants with broad-spectrum resistance through genetically manipulating a single player in MAPK cascades.


Subject(s)
Nicotiana/metabolism , Nicotiana/virology , Plant Proteins/metabolism , Potexvirus/pathogenicity , Protein Tyrosine Phosphatases/metabolism , Virus Replication/physiology , Plant Proteins/genetics , Potexvirus/genetics , Protein Tyrosine Phosphatases/genetics , RNA, Viral/genetics , Nicotiana/genetics , Virus Replication/genetics
7.
Front Microbiol ; 8: 522, 2017.
Article in English | MEDLINE | ID: mdl-28400766

ABSTRACT

The genus Potexvirus is one of the eight genera belonging to the family Alphaflexiviridae according to the Virus Taxonomy 2015 released by International Committee on Taxonomy of Viruses (www.ictvonline.org/index.asp). Currently, the genus contains 35 known species including many agricultural important viruses, e.g., Potato virus X (PVX). Members of this genus are characterized by flexuous, filamentous virions of 13 nm in diameter and 470-580 nm in length. A potexvirus has a monopartite positive-strand RNA genome, encoding five open-reading frames (ORFs), with a cap structure at the 5' end and a poly(A) tail at the 3' end. Besides PVX, Bamboo mosaic virus (BaMV) is another potexvirus that has received intensive attention due to the wealth of knowledge on the molecular biology of the virus. In this review, we discuss the enzymatic activities associated with each of the functional domains of the BaMV replication protein, a 155-kDa polypeptide encoded by ORF1. The unique cap formation mechanism, which may be conserved across the alphavirus superfamily, is particularly addressed. The recently identified interactions between the replication protein and the plant host factors are also described.

8.
Front Microbiol ; 6: 959, 2015.
Article in English | MEDLINE | ID: mdl-26441893

ABSTRACT

Thermobifida fusca is a moderately thermophilic and cellulolytic actinobacterium. It is of particular interest due to its ability to not only produce a variety of biotechnologically relevant enzymes but also serve as an alternative host for metabolic engineering for the production of valuable chemicals from lignocellulosic agricultural wastes. No bacteriophage that infects T. fusca has been reported, despite its potential impacts on the utilization of T. fusca. In this study, an extremely thermostable bacteriophage P1312 that infects T. fusca was isolated from manure compost. Electron microscopy showed that P1312 has an icosahedral head and a long flexible non-contractile tail, a characteristic of the family Siphoviridae. P1312 has a double-stranded DNA genome of 60,284 bp with 93 potential ORFs. Thirty-one ORFs encode proteins having putative biological functions. The genes involved in phage particle formation cluster together in a region of approximately 16 kb, followed by a segment containing genes presumably for DNA degradation/modification and cell wall disruption. The genes required for DNA replication and transcriptional control are dispersed within the rest of the genome. Phylogenetic analysis of large terminase subunit suggests that P1312 is a headful packaging phage containing a chromosome with circularly permuted direct terminal repeats.

9.
Front Microbiol ; 6: 1508, 2015.
Article in English | MEDLINE | ID: mdl-26779163

ABSTRACT

Bamboo mosaic virus (BaMV) has a 6.4-kb (+) sense RNA genome with a 5' cap and a 3' poly(A) tail. ORF1 of this potexvirus encodes a 155-kDa replication protein responsible for the viral RNA replication/transcription and 5' cap formation. To learn more about the replication complex of BaMV, a protein preparation enriched in the 155-kDa replication protein was obtained from Nicotiana benthamiana by a protocol involving agroinfiltration and immunoprecipitation. Subsequent analysis by SDS-PAGE and mass spectrometry identified a handful of host proteins that may participate in the viral replication. Among them, the cytoplasmic exoribonuclease NbXRN4 particularly caught our attention. NbXRN4 has been shown to have an antiviral activity against Tomato bushy stunt virus and Tomato mosaic virus. In Arabidopsis, the enzyme could reduce RNAi- and miRNA-mediated RNA decay. This study found that downregulation of NbXRN4 greatly decreased BaMV accumulation, while overexpression of NbXRN4 resulted in an opposite effect. Mutations at the catalytically essential residues abolished the function of NbXRN4 in the increase of BaMV accumulation. Nonetheless, NbXRN4 was still able to promote BaMV accumulation in the presence of the RNA silencing suppressor P19. In summary, the replication efficiency of BaMV may be improved by the exoribonuclease activity of NbXRN4.

10.
J Virol ; 85(22): 12022-31, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21917973

ABSTRACT

Bamboo mosaic virus (BaMV) is a positive-sense RNA virus belonging to the genus Potexvirus. Open reading frame 1 (ORF1) encodes the viral replication protein that consists of a capping enzyme domain, a helicase-like domain (HLD), and an RNA-dependent RNA polymerase domain from the N to C terminus. ORF5 encodes the viral coat protein (CP) required for genome encapsidation and the virus movement in plants. In this study, application of a yeast-two hybrid assay detected an interaction between the viral HLD and CP. However, the interaction did not affect the NTPase activity of the HLD. To identify the critical amino acids of CP interacting with the HLD, a random mutational library of CP was created using error-prone PCR, and the mutations adversely affecting the interaction were screened by a bacterial two-hybrid system. As a result, the mutations A209G and N210S in CP were found to weaken the interaction. To determine the significance of the interaction, the mutations were introduced into a BaMV infectious clone, and the mutational effects on viral replication, movement, and genome encapsidation were investigated. There was no effect on accumulations of BaMV CP and genomic RNAs within protoplasts; however, the virus cell-to-cell movement in plants was restricted. Sequence alignment revealed that A209 of BaMV CP is conserved in many potexviruses. Mutation of the corresponding residue in Foxtail mosaic virus CP also reduced the viral HLD-CP interaction and restricted the virus movement, suggesting that interaction between CP and a widely conserved HLD in the potexviral replication protein is crucial for viral trafficking through plasmodesmata.


Subject(s)
Capsid Proteins/metabolism , Plant Diseases/virology , Potexvirus/pathogenicity , Protein Interaction Mapping , RNA-Dependent RNA Polymerase/metabolism , Amino Acid Sequence , Capsid Proteins/genetics , DNA Mutational Analysis , Molecular Sequence Data , Mutant Proteins/genetics , Mutant Proteins/metabolism , RNA-Dependent RNA Polymerase/genetics , Sequence Alignment , Two-Hybrid System Techniques
11.
J Virol ; 83(11): 5796-805, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19297487

ABSTRACT

Bamboo mosaic virus (BaMV) is a 6.4-kb positive-sense RNA virus belonging to the genus Potexvirus of the family Flexiviridae. The 155-kDa viral replicase, the product of ORF1, comprises an N-terminal S-adenosyl-l-methionine (AdoMet)-dependent guanylyltransferase, a nucleoside triphosphatase/RNA 5'-triphosphatase, and a C-terminal RNA-dependent RNA polymerase (RdRp). To search for cellular factors potentially involved in the regulation of replication and/or transcription of BaMV, the viral RdRp domain was targeted as bait to screen against a leaf cDNA library of Nicotiana benthamiana using a yeast two-hybrid system. A putative methyltransferase (PNbMTS1) of 617 amino acid residues without an established physiological function was identified. Cotransfection of N. benthamiana protoplasts with a BaMV infectious clone and the PNbMTS1-expressing plasmid showed a PNbMTS1 dosage-dependent inhibitory effect on the accumulation of BaMV coat protein. Deletion of the N-terminal 36 amino acids, deletion of a predicted signal peptide or transmembrane segment, or mutations in the putative AdoMet-binding motifs of PNbMTS1 abolished the inhibitory effect. In contrast, suppression of PNbMTS1 by virus-induced gene silencing in N. benthamiana increased accumulation of the viral coat protein as well as the viral genomic RNA. Collectively, PNbMTS1 may function as an innate defense protein against the accumulation of BaMV through an uncharacterized mechanism.


Subject(s)
Methyltransferases/metabolism , Nicotiana/virology , Potexvirus/enzymology , Amino Acid Sequence , Methyltransferases/chemistry , Methyltransferases/genetics , Molecular Sequence Data , Potexvirus/genetics , Protein Binding , Protoplasts/metabolism , Substrate Specificity , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...