Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Article in English | MEDLINE | ID: mdl-32188138

ABSTRACT

BACKGROUND: Most stroke cases lead to serious mental and physical disabilities, such as dementia and sensory impairment. Chronic diseases are contributory risk factors for stroke. However, few studies considered the transition behaviors of stroke to dementia associated with chronic diseases and environmental risks. OBJECTIVE: This study aims to develop a prognosis model to address the issue of stroke transitioning to dementia associated with environmental risks. DESIGN: This cohort study used the data from the National Health Insurance Research Database in Taiwan. SETTING: Healthcare data were obtained from more than 25 million enrollees and covered over 99% of Taiwan's entire population. PARTICIPANTS: In this study, 10,627 stroke patients diagnosed from 2000 to 2010 in Taiwan were surveyed. METHODS: A Cox regression model and corresponding semi-Markov process were constructed to evaluate the influence of risk factors on stroke, corresponding dementia, and their transition behaviors. MAIN OUTCOME MEASURE: Relative risk and sojourn time were the main outcome measure. RESULTS: Multivariate analysis showed that certain environmental risks, medication, and rehabilitation factors highly influenced the transition of stroke from a chronic disease to dementia. This study also highlighted the high-risk populations of stroke patients against the environmental risk factors; the males below 65 years old were the most sensitive population. CONCLUSION: Experiments showed that the proposed semi-Markovian model outperformed other benchmark diagnosis algorithms (i.e., linear regression, decision tree, random forest, and support vector machine), with a high R2 of 90%. The proposed model also facilitated an accurate prognosis on the transition time of stroke from chronic diseases to dementias against environmental risks and rehabilitation factors.


Subject(s)
Dementia , Environmental Pollutants , Stroke , Aged , Cohort Studies , Dementia/epidemiology , Environmental Pollutants/toxicity , Female , Humans , Male , Risk Factors , Stroke/epidemiology , Taiwan
2.
Cell Rep ; 19(3): 451-460, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28423309

ABSTRACT

Flavivirus infections by Zika and dengue virus impose a significant global healthcare threat with no US Food and Drug Administration (FDA)-approved vaccination or specific antiviral treatment available. Here, we present the discovery of an anti-flaviviral natural product named cavinafungin. Cavinafungin is a potent and selectively active compound against Zika and all four dengue virus serotypes. Unbiased, genome-wide genomic profiling in human cells using a novel CRISPR/Cas9 protocol identified the endoplasmic-reticulum-localized signal peptidase as the efficacy target of cavinafungin. Orthogonal profiling in S. cerevisiae followed by the selection of resistant mutants pinpointed the catalytic subunit of the signal peptidase SEC11 as the evolutionary conserved target. Biochemical analysis confirmed a rapid block of signal sequence cleavage of both host and viral proteins by cavinafungin. This study provides an effective compound against the eukaryotic signal peptidase and independent confirmation of the recently identified critical role of the signal peptidase in the replicative cycle of flaviviruses.


Subject(s)
Biological Products/pharmacology , Dengue Virus/physiology , Lipopeptides/pharmacology , Virus Replication/drug effects , Zika Virus/physiology , Biological Products/chemistry , CRISPR-Cas Systems/genetics , Dengue Virus/drug effects , Gene Knockdown Techniques , Genome, Human , Genomics , HCT116 Cells , Humans , Lipopeptides/chemistry , Membrane Proteins , Protein Subunits/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Serine Endopeptidases , Viral Proteins/metabolism , Zika Virus/drug effects
3.
J Virol ; 89(12): 6171-83, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25833044

ABSTRACT

UNLABELLED: Flavivirus NS4A protein induces host membrane rearrangement and functions as a replication complex component. The molecular details of how flavivirus NS4A exerts these functions remain elusive. Here, we used dengue virus (DENV) as a model to characterize and demonstrate the biological relevance of flavivirus NS4A oligomerization. DENV type 2 (DENV-2) NS4A protein forms oligomers in infected cells or when expressed alone. Deletion mutagenesis mapped amino acids 50 to 76 (spanning the first transmembrane domain [TMD1]) of NS4A as the major determinant for oligomerization, while the N-terminal 50 residues contribute only slightly to the oligomerization. Nuclear magnetic resonance (NMR) analysis of NS4A amino acids 17 to 80 suggests that residues L31, L52, E53, G66, and G67 could participate in oligomerization. Ala substitution for 15 flavivirus conserved NS4A residues revealed that these amino acids are important for viral replication. Among the 15 mutated NS4A residues, 2 amino acids (E50A and G67A) are located within TMD1. Both E50A and G67A attenuated viral replication, decreased NS4A oligomerization, and reduced NS4A protein stability. In contrast, NS4A oligomerization was not affected by the replication-defective mutations (R12A, P49A, and K80A) located outside TMD1. trans complementation experiments showed that expression of wild-type NS4A alone was not sufficient to rescue the replication-lethal NS4A mutants. However, the presence of DENV-2 replicons could partially restore the replication defect of some lethal NS4A mutants (L26A and K80A), but not others (L60A and E122A), suggesting an unidentified mechanism governing the outcome of complementation in a mutant-dependent manner. Collectively, the results have demonstrated the importance of TMD1-mediated NS4A oligomerization in flavivirus replication. IMPORTANCE: We report that DENV NS4A forms oligomers. Such NS4A oligomerization is mediated mainly through amino acids 50 to 76 (spanning the first transmembrane domain [TMD1]). The biological importance of NS4A oligomerization is demonstrated by results showing that mutations of flavivirus conserved residues (E50A and G67A located within TMD1) reduced the oligomerization and stability of the NS4A protein, leading to attenuated viral replication. A systematic mutagenesis analysis demonstrated that flavivirus conserved NS4A residues are important for DENV replication. A successful trans complementation of replication-lethal NS4A mutant virus requires wild-type NS4A in the context of the viral replication complex. The wild-type NS4A protein alone is not sufficient to rescue the replication defect of NS4A mutants. Intriguingly, distinct NS4A mutants yielded different complementation outcomes in the replicon-containing cells. Overall, the study has enhanced our understanding of flavivirus NS4A at the molecular level. The results also suggest that inhibitor blocking of NS4A oligomerization could be explored for antiviral drug discovery.


Subject(s)
Dengue Virus/genetics , Dengue Virus/physiology , Protein Multimerization , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication , Amino Acid Substitution , DNA Mutational Analysis , Genetic Complementation Test , Sequence Deletion
4.
Proc Natl Acad Sci U S A ; 109(50): 20385-90, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23185023

ABSTRACT

Covalently conjugating multiple copies of the drug zanamivir (ZA; the active ingredient in Relenza) via a flexible linker to poly-l-glutamine (PGN) enhances the anti-influenza virus activity by orders of magnitude. In this study, we investigated the mechanisms of this phenomenon. Like ZA itself, the PGN-attached drug (PGN-ZA) binds specifically to viral neuraminidase and inhibits both its enzymatic activity and the release of newly synthesized virions from infected cells. Unlike monomeric ZA, however, PGN-ZA also synergistically inhibits early stages of influenza virus infection, thus contributing to the markedly increased antiviral potency. This inhibition is not caused by a direct virucidal effect, aggregation of viruses, or inhibition of viral attachment to target cells and the subsequent endocytosis; rather, it is a result of interference with intracellular trafficking of the endocytosed viruses and the subsequent virus-endosome fusion. These findings both rationalize the great anti-influenza potency of PGN-ZA and reveal that attaching ZA to a polymeric chain confers a unique mechanism of antiviral action potentially useful for minimizing drug resistance.


Subject(s)
Antiviral Agents/administration & dosage , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/drug therapy , Influenza, Human/virology , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Zanamivir/analogs & derivatives , Animals , Antiviral Agents/chemistry , Dogs , Drug Synergism , Endocytosis/drug effects , Hemagglutinin Glycoproteins, Influenza Virus/drug effects , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H1N1 Subtype/ultrastructure , Madin Darby Canine Kidney Cells , Microscopy, Electron, Transmission , Neuraminidase/antagonists & inhibitors , Peptides/chemistry , Zanamivir/administration & dosage , Zanamivir/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...