Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Diabetologia ; 67(9): 1838-1852, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38772919

ABSTRACT

AIMS/HYPOTHESIS: Many studies have examined the relationship between plasma metabolites and type 2 diabetes progression, but few have explored saliva and multi-fluid metabolites. METHODS: We used LC/MS to measure plasma (n=1051) and saliva (n=635) metabolites among Puerto Rican adults from the San Juan Overweight Adults Longitudinal Study. We used elastic net regression to identify plasma, saliva and multi-fluid plasma-saliva metabolomic scores predicting baseline HOMA-IR in a training set (n=509) and validated these scores in a testing set (n=340). We used multivariable Cox proportional hazards models to estimate HRs for the association of baseline metabolomic scores predicting insulin resistance with incident type 2 diabetes (n=54) and prediabetes (characterised by impaired glucose tolerance, impaired fasting glucose and/or high HbA1c) (n=130) at 3 years, along with regression from prediabetes to normoglycaemia (n=122), adjusting for traditional diabetes-related risk factors. RESULTS: Plasma, saliva and multi-fluid plasma-saliva metabolomic scores predicting insulin resistance included highly weighted metabolites from fructose, tyrosine, lipid and amino acid metabolism. Each SD increase in the plasma (HR 1.99 [95% CI 1.18, 3.38]; p=0.01) and multi-fluid (1.80 [1.06, 3.07]; p=0.03) metabolomic scores was associated with higher risk of type 2 diabetes. The saliva metabolomic score was associated with incident prediabetes (1.48 [1.17, 1.86]; p=0.001). All three metabolomic scores were significantly associated with lower likelihood of regressing from prediabetes to normoglycaemia in models adjusting for adiposity (HRs 0.72 for plasma, 0.78 for saliva and 0.72 for multi-fluid), but associations were attenuated when adjusting for lipid and glycaemic measures. CONCLUSIONS/INTERPRETATION: The plasma metabolomic score predicting insulin resistance was more strongly associated with incident type 2 diabetes than the saliva metabolomic score. Only the saliva metabolomic score was associated with incident prediabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Disease Progression , Insulin Resistance , Metabolomics , Prediabetic State , Saliva , Humans , Saliva/metabolism , Saliva/chemistry , Insulin Resistance/physiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Male , Female , Middle Aged , Prediabetic State/metabolism , Prediabetic State/blood , Adult , Longitudinal Studies , Aged , Hispanic or Latino , Puerto Rico/epidemiology
2.
Mol Metab ; 6(10): 1186-1197, 2017 10.
Article in English | MEDLINE | ID: mdl-29031719

ABSTRACT

OBJECTIVE: Alternative activation (M2) of adipose tissue resident macrophage (ATM) inhibits obesity-induced metabolic inflammation. The underlying mechanisms remain unclear. Recent studies have shown that dysregulated lipid homeostasis caused by increased lipolysis in white adipose tissue (WAT) in the obese state is a trigger of inflammatory responses. We investigated the role of M2 macrophages in lipotoxicity-induced inflammation. METHODS: We used microarray experiments to profile macrophage gene expression regulated by two M2 inducers, interleukin-4 (Il-4), and peroxisome proliferator-activated receptor delta/gamma (Pparδ/Pparγ) agonists. Functional validation studies were performed in bone marrow-derived macrophages and mice deprived of the signal transducer and activator of transcription 6 gene (Stat6; downstream effector of Il-4) or Pparδ/Pparγ genes (downstream effectors of Stat6). Palmitic acid (PA) and ß-adrenergic agonist were employed to induce macrophage lipid loading in vitro and in vivo, respectively. RESULTS: Profiling of genes regulated by Il-4 or Pparδ/Pparγ agonists reveals that alternative activation promotes the cell survival program, while inhibiting that of inflammation-related cell death. Deletion of Stat6 or Pparδ/Pparγ increases the susceptibility of macrophages to PA-induced cell death. NLR family pyrin domain containing 3 (Nlrp3) inflammasome activation by PA in the presence of lipopolysaccharide is also increased in Stat6-/- macrophages and to a lesser extent, in Pparδ/γ-/- macrophages. In concert, ß-adrenergic agonist-induced lipolysis results in higher levels of cell death and inflammatory markers in ATMs derived from myeloid-specific Pparδ/γ-/- or Stat6-/- mice. CONCLUSIONS: Our data suggest that ATM cell death is closely linked to metabolic inflammation. Within WAT where concentrations of free fatty acids fluctuate, M2 polarization regulated by the Stat6-Ppar axis enhances ATM's tolerance to lipid-mediated stress, thereby maintaining the homeostatic state.


Subject(s)
Adipose Tissue, White/metabolism , Macrophage Activation/physiology , Macrophages/physiology , Adipose Tissue, White/pathology , Animals , Apoptosis/physiology , Cell Death/physiology , Homeostasis , Inflammation/metabolism , Inflammation/pathology , Interleukin-4/metabolism , Lipid Metabolism , Lipolysis/physiology , Lipopolysaccharides/metabolism , Macrophages/cytology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Obesity/pathology , PPAR delta/agonists , PPAR delta/genetics , PPAR gamma/agonists , PPAR gamma/genetics , STAT6 Transcription Factor/metabolism , Signal Transduction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL