Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
iScience ; 27(4): 109564, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38617563

ABSTRACT

The successful commercialization of algal biophotovoltaics (BPV) technology hinges upon a multifaceted approach, encompassing factors such as the development of a cost-efficient and highly conductive anode material. To address this issue, we developed an environmentally benign method of producing reduced graphene oxide (rGO), using concentrated Chlorella sp. UMACC 313 suspensions as the reducing agent. The produced rGO was subsequently coated on the carbon paper (rGO-CP) and used as the BPV device's anode. As a result, maximum power density was increased by 950% for Chlorella sp. UMACC 258 (0.210 mW m-2) and 781% for Synechococcus sp. UMACC 371 (0.555 mW m-2) compared to bare CP. The improved microalgae adhesion to the anode and improved electrical conductivity of rGO brought on by the effective removal of oxygen functional groups may be the causes of this. This study has demonstrated how microalgal-reduced GO may improve the efficiency of algal BPV for producing bioelectricity.

2.
Appl Microbiol Biotechnol ; 108(1): 71, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38194143

ABSTRACT

In this study, the bioelectrical power generation potential of four tropical marine microalgal strains native to Malaysia was investigated using BPV platforms. Chlorella UMACC 258 produced the highest power density (0.108 mW m-2), followed by Halamphora subtropica UMACC 370 (0.090 mW m-2), Synechococcus UMACC 371 (0.065 mW m-2) and Parachlorella UMACC 245 (0.017 mW m-2). The chlorophyll-a (chl-a) content was examined to have a linear positive relationship with the power density (p < 0.05). The photosynthetic performance of strains was studied using the pulse-amplitude modulation (PAM) fluorometer; parameters measured include the following: maximum quantum efficiency (Fv/Fm), alpha (α), maximum relative electron transport rate (rETRmax), photo-adaptive index (Ek) and non-photochemical quenching (NPQ). The Fv/Fm values of all strains, except Synechococcus UMACC 371, ranged between 0.37 and 0.50 during exponential and stationary growth phases, suggesting their general health during those periods. The low Fv/Fm value of Synechococcus UMACC 371 was possibly caused by the presence of background fluorescence from phycobilisomes or phycobiliproteins. Electrochemical studies via cyclic voltammetry (CV) suggest the presence of electrochemically active proteins on the cellular surface of strains on the carbon anode of the BPV platform, while morphological studies via field emission scanning electron microscope (FESEM) imaging verify the biocompatibility of the biofilms on the carbon anode. KEY POINTS: • Maximum power output of 0.108 mW m-2 is recorded by Chlorella UMACC 258 • There is a positive correlation between chl-a content and power output • Proven biocompatibility between biofilms and carbon anode sans exogenous mediators.


Subject(s)
Chlorella , Microalgae , Aquaculture , Biofilms , Carbon , Cell Cycle
3.
PeerJ ; 12: e16556, 2024.
Article in English | MEDLINE | ID: mdl-38223759

ABSTRACT

Background: Escherichia coli is a commonly used faecal indicator bacterium to assess the level of faecal contamination in aquatic habitats. However, extensive studies have reported that sediment acts as a natural reservoir of E. coli in the extraintestinal environment. E. coli can be released from the sediment, and this may lead to overestimating the level of faecal contamination during water quality surveillance. Thus, we aimed to investigate the effects of E. coli habitat transition from sediment to water on its abundance in the water column. Methods: This study enumerated the abundance of E. coli in the water and sediment at five urban lakes in the Kuala Lumpur-Petaling Jaya area, state of Selangor, Malaysia. We developed a novel method for measuring habitat transition rate of sediment E. coli to the water column, and evaluated the effects of habitat transition on E. coli abundance in the water column after accounting for its decay in the water column. Results: The abundance of E. coli in the sediment ranged from below detection to 12,000 cfu g-1, and was about one order higher than in the water column (1 to 2,300 cfu mL-1). The habitat transition rates ranged from 0.03 to 0.41 h-1. In contrast, the E. coli decay rates ranged from 0.02 to 0.16 h-1. In most cases (>80%), the habitat transition rates were higher than the decay rates in our study. Discussion: Our study provided a possible explanation for the persistence of E. coli in tropical lakes. To the best of our knowledge, this is the first quantitative study on habitat transition of E. coli from sediments to water column.


Subject(s)
Escherichia coli , Lakes , Lakes/microbiology , Water Microbiology , Water Quality , Ecosystem
4.
Mar Pollut Bull ; 200: 116064, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290368

ABSTRACT

Mangrove forests can help to mitigate climate change by storing a significant amount of carbon (C) in soils. Planted mangrove forests have been established to combat anthropogenic threats posed by climate change. However, the efficiency of planted forests in terms of soil organic carbon (SOC) storage and dynamics relative to that of natural forests is unclear. We assessed SOC and nutrient storage, SOC sources and drivers in a natural and a planted forest in southern Thailand. Although the planted forest stored more C and nutrients than the natural forest, the early-stage planted forest was not a strong sink relative to mudflat. Both forests were predominated by allochthonous organic C and nitrogen limited, with total nitrogen being a major driver of SOC in both cases. SOC showed a significant decline along land-to-sea and depth gradients as a result of soil texture, nutrient availability, and pH in the natural forest.


Subject(s)
Carbon , Soil , Carbon/analysis , Wetlands , Nitrogen/analysis , Thailand , Forests , Ecosystem
5.
ACS Synth Biol ; 12(4): 909-921, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37026178

ABSTRACT

Bacteriophage N15 is the first virus known to deliver linear prophage into Escherichia coli. During its lysogenic cycle, N15 protelomerase (TelN) resolves its telomerase occupancy site (tos) into hairpin telomeres. This protects the N15 prophage from bacterial exonuclease degradation, enabling it to stably replicate as a linear plasmid in E. coli. Interestingly, purely proteinaceous TelN can retain phage DNA linearization and hairpin formation without involving host- or phage-derived intermediates or cofactors in the heterologous environment. This unique feature has led to the advent of synthetic linear DNA vector systems derived from the TelN-tos module for the genetic engineering of bacterial and mammalian cells. This review will focus on the development and advantages of N15-based novel cloning and expression vectors in the bacterial and mammalian environments. To date, N15 is the most widely exploited molecular tool for the development of linear vector systems, especially the production of therapeutically useful miniDNA vectors without a bacterial backbone. Compared to typical circular plasmids, linear N15-based plasmids display remarkable cloning fidelity in propagating unstable repetitive DNA sequences and large genomic fragments. Additionally, TelN-linearized vectors with the relevant origin of replication can replicate extrachromosomally and retain transgenes functionality in bacterial and mammalian cells without compromising host cell viability. Currently, this DNA linearization system has shown robust results in the development of gene delivery vehicles, DNA vaccines and engineering mammalian cells against infectious diseases or cancers, highlighting its multifaceted importance in genetic studies and gene medicine.


Subject(s)
Bacteriophages , Cloning, Molecular , Genetic Vectors , Prophages , Animals , Bacteriophages/genetics , Bacteriophages/metabolism , Cloning, Molecular/methods , DNA/genetics , DNA/metabolism , DNA Replication/genetics , DNA Replication/physiology , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors/genetics , Genetic Vectors/metabolism , Mammals/genetics , Plasmids/genetics , Prophages/genetics , Genetic Engineering/methods , Telomerase/genetics , Telomerase/metabolism , Nucleic Acid Conformation
7.
Mar Pollut Bull ; 185(Pt A): 114297, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36327936

ABSTRACT

We investigated the appropriateness of faecal indicator bacteria in tropical waters. We compared total coliform (undetectable to 7.2 × 105 cfu 100 mL-1), faecal coliform (undetectable to 6.1 × 105 cfu 100 mL-1) and enterococci (undetectable to 3.1 × 104 cfu 100 mL-1) distribution in Peninsular Malaysia. Faecal indicator bacteria was highest in freshwater, and lowest in seawater (q > 4.18, p < 0.01). We also measured the decay rates of Escherichia coli and Enterococcus faecium in microcosms. In seawater, average decay rate for E. coli was 0.084 ± 0.029 h-1, and higher than E. faecium (0.048 ± 0.024 h-1) (t = 2.527, p < 0.05). Grazing accounted for 54 % of both E. coli and E. faecium decay. E. coli decayed in the <0.02 µm seawater fraction (0.023 ± 0.012 h-1) but E. faecium sometimes grew. Seawater warming further uncoupled the response from both E. coli and E. faecium as E. faecium grew and E. coli decayed with warming. Our results suggested that the prevalence of faecal indicator bacteria in tropical waters was not due to faecal pollution alone, and this will have serious implications towards the use of these faecal indicator bacteria.


Subject(s)
Escherichia coli , Seawater , Escherichia coli/physiology , Malaysia , Seawater/microbiology , Feces/microbiology , Bacteria , Water Microbiology
9.
Front Public Health ; 10: 794513, 2022.
Article in English | MEDLINE | ID: mdl-35356018

ABSTRACT

Aquatic environments, under frequent anthropogenic pressure, could serve as reservoirs that provide an ideal condition for the acquisition and dissemination of antibiotic resistance genetic determinants. We investigated the prevalence and diversity of antibiotic-resistant Escherichia coli by focusing on their genetic diversity, virulence, and resistance genes in anthropogenic-impacted Larut River. The abundance of E. coli ranged from (estimated count) Est 1 to 4.7 × 105 (colony-forming units per 100 ml) CFU 100 ml-1 to Est 1 to 4.1 × 105 CFU 100 ml-1 with phylogenetic group B1 (46.72%), and A (34.39%) being the most predominant. The prevalence of multiple antibiotic resistance phenotypes of E. coli, with the presence of tet and sul resistance genes, was higher in wastewater effluents than in the river waters. These findings suggested that E. coli could be an important carrier of the resistance genes in freshwater river environments. The phylogenetic composition of E. coli and resistance genes was associated with physicochemical properties and antibiotic residues. These findings indicated that the anthropogenic inputs exerted an effect on the E. coli phylogroup composition, diversification of multiple antibiotic resistance phenotypes, and the distribution of resistance genes in the Larut River.


Subject(s)
Drug Resistance, Bacterial , Escherichia coli , Rivers , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Malaysia , Phylogeny , Prevalence , Rivers/microbiology
10.
Anal Biochem ; 634: 114432, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34695391

ABSTRACT

Quantification of bacterial invasion into eukaryotic cells is a prerequisite to unfold the molecular mechanisms of this vector's function to obtain insights for improving its efficiency. Invasion is traditionally quantified by antibiotic protection assays that require dilution plating and counting of colony-forming units rescued from infected cells. However, to differentiate between attached and internalized bacteria vector, this assay requires supplementation by a time-consuming and tedious immunofluorescence staining, making it laborious and reduces its reliability and reproducibility. Here we describe a new red fluorescent protein (RFP)-based high-throughput and inexpensive method for tracking bacterial adherence and internalization through flow cytometry to provide a convenient and real-time quantification of bacterial invasiveness in a heterogeneous population of cells. We invaded MCF-7, A549, and HEK-293 cells with the E. coli vector and measured RFP using imaging flow cytometry. We found high cellular infection of up to 70.47% in MCF-7 compared to 27.4% and 26.2% in A549 and HEK-293 cells, respectively. The quantitative evaluation of internalized E. coli is rapid and cell-dependent, and it distinctively differentiates between attached and cytosolic bacteria while showing the degree of cellular invasiveness. This imaging flow cytometry approach can be applied broadly to study host-bacteria interaction.


Subject(s)
Escherichia coli/pathogenicity , Eukaryotic Cells/microbiology , Flow Cytometry/methods , Luminescent Proteins/metabolism , A549 Cells , Bacteria/pathogenicity , Escherichia coli/metabolism , HEK293 Cells , Humans , MCF-7 Cells , Reproducibility of Results , Staining and Labeling/methods , Red Fluorescent Protein
11.
Mar Pollut Bull ; 172: 112871, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34428623

ABSTRACT

Concentrations, sources and interactions between black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) were investigated in 42 sediment samples collected from riverine, coastal and shelf areas in Peninsular Malaysia. The concentrations of BC measured by benzene polycarboxylic acid (BPCA) method and PAHs showed broad spatial variations between the relatively pristine environment of the East coast and developed environment of the West and South coast ranging from 0.02 to 0.36% dw and 57.7 ng g-1 dw to 19,300 ng g-1 dw, respectively. Among diagnostic ratios of PAHs, the ratios of Ant/(Ant+Phe) and LMW/HMW drew the clearest distinctions between the East coast versus the West and South coast sediments indicating the predominance of petrogenic sources in the former versus pyrogenic sources in the latter. PAHs significantly correlated with BC and total organic carbon (TOC) in the sediments (p < 0.05) having similar correlation coefficients. BC accounted for 6.06 to 30.6% of TOC in sediments.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Carbon/analysis , Environmental Monitoring , Geologic Sediments , Malaysia , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
12.
Biomark Res ; 9(1): 51, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193301

ABSTRACT

Ribosomal protein genes encode products that are essential for cellular protein biosynthesis and are major components of ribosomes. Canonically, they are involved in the complex system of ribosome biogenesis pivotal to the catalysis of protein translation. Amid this tightly organised process, some ribosomal proteins have unique spatial and temporal physiological activity giving rise to their extra-ribosomal functions. Many of these extra-ribosomal roles pertain to cellular growth and differentiation, thus implicating the involvement of some ribosomal proteins in organogenesis. Consequently, dysregulated functions of these ribosomal proteins could be linked to oncogenesis or neoplastic transformation of human cells. Their suspected roles in carcinogenesis have been reported but not specifically explained for malignancy of the nasopharynx. This is despite the fact that literature since one and half decade ago have documented the association of ribosomal proteins to nasopharyngeal cancer. In this review, we explain the association and contribution of dysregulated expression among a subset of ribosomal proteins to nasopharyngeal oncogenesis. The relationship of these ribosomal proteins with the cancer are explained. We provide information to indicate that the dysfunctional extra-ribosomal activities of specific ribosomal proteins are tightly involved with the molecular pathogenesis of nasopharyngeal cancer albeit mechanisms yet to be precisely defined. The complete knowledge of this will impact future applications in the effective management of nasopharyngeal cancer.

14.
Mar Pollut Bull ; 169: 112524, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34049069

ABSTRACT

The dissolved organic nutrient conditions and bacterial process rates at two tropical coastal sites in Peninsular Malaysia (Port Klang and Port Dickson) were initially studied in 2004-2005 period and later revisited in 2010-2011. We observed that dissolved organic nitrogen (DON) increased about two- and ten-fold at Port Klang and Port Dickson, respectively and resulted in a significant change in DOC:DON ratio (t ≥ 2.077, p < 0.05). Among the bacterial processes measured, bacterial respiration (BR) was lower in the 2010-2011 period at both stations (t ≥ 3.390, p < 0.01). BR also correlated to the DOC:DON ratio (R2 ≥ 0.259, p < 0.01). The increase in substrate quality enabled the bacteria to respire less in the dissolved organic matter degradation. As a result, the average bacterial growth efficiency increased slightly in the 2010-2011 period.


Subject(s)
Bacterial Physiological Phenomena , Eutrophication , Bacteria , Carbon/analysis , Malaysia , Nitrogen/analysis
15.
Anal Biochem ; 616: 114088, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33358938

ABSTRACT

Endosomal escape is considered a crucial barrier that needs to be overcome by integrin-mediated E. coli for gene delivery into mammalian cells. Bafilomycin, a potent inhibitor of the H+ proton pump commonly employed to lower endosomal pH, was evaluated as part of the E. coli protocol during delivery. We found an increase in green fluorescent protein expression up 6.9, 3.2, 5.0, 2.8, and 4.5 fold in HeLa, HEK-293, A549, HT1080, and MCF-7 respectively, compared to untreated cells. Our result showed for the first time that Inhibition of lysosomal V-ATPase enhances E. coli efficiency.


Subject(s)
Bacterial Proton-Translocating ATPases/antagonists & inhibitors , Escherichia coli/enzymology , Lysosomes/enzymology , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Cell Line, Transformed , Cell Line, Tumor , Down-Regulation/drug effects , Escherichia coli/genetics , Genetic Vectors/metabolism , Green Fluorescent Proteins/biosynthesis , Homeostasis/drug effects , Humans , Hydrogen-Ion Concentration , Lysosomes/drug effects , Macrolides/pharmacology , Transfection/methods
16.
Chemosphere ; 263: 128272, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297216

ABSTRACT

Barnacles are ubiquitous in coastal ecosystems of different geographical regions worldwide. This is the first study attempting to assess the suitability of barnacles as bioindicators of persistent organic pollutants (POPs) in coastal environments. Barnacles were collected from the coasts around Peninsular Malaysia and analyzed for POPs including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs). Among POPs, PCBs showed the highest concentrations with elevated contributions of CB28 and CB153. As for PBDEs, BDE47 was the most frequently detected congener, while BDE209 was detected in barnacles from two stations in Port Klang and the levels reached up to >70% of total PBDE concentrations. Concentrations of OCPs detected in barnacles were in the order of CHLs > DDTs > HCHs > HCB and 4,4'-DDE and cis- and trans-chlordane were the predominant OCP compounds. A comparison with previous studies in Malaysia showed consistent levels of POPs. Green mussels collected from selected barnacles' habitats, for the sake of a comparison, showed almost similar profiles but lower concentrations of POPs. The spatial distribution of POPs observed in barnacles and comparison of POP levels and profiles with mussels indicated that barnacles can be useful bioindicators for monitoring POPs contamination in the coastal ecosystems.


Subject(s)
Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Thoracica , Animals , Ecosystem , Environmental Biomarkers , Environmental Monitoring , Halogenated Diphenyl Ethers/analysis , Hydrocarbons, Chlorinated/analysis , Malaysia , Persistent Organic Pollutants , Pesticides/analysis , Polychlorinated Biphenyls/analysis
17.
Environ Monit Assess ; 192(10): 660, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32975666

ABSTRACT

We sampled the Klang estuary during the inter-monsoon and northeast monsoon period (July-Nov 2011, Oct-Nov 2012), which coincided with higher rainfall and elevated Klang River flow. The increased freshwater inflow into the estuary resulted in water column stratification that was observed during both sampling periods. Dissolved oxygen (DO) dropped below 63 µM, and hypoxia was observed. Elevated river flow also transported dissolved inorganic nutrients, chlorophyll a and bacteria to the estuary. However, bacterial production did not correlate with DO concentration in this study. As hypoxia was probably not due to in situ heterotrophic processes, deoxygenated waters were probably from upstream. We surmised this as DO correlated with salinity (R2 = 0.664, df = 86, p < 0.001). DO also decreased with increasing flushing time (R2 = 0.556, df = 11, p < 0.01), suggesting that when flushing time (> 6.7 h), hypoxia could occur at the Klang estuary. Here, we presented a model that related riverine flow rate to the post-heavy rainfall hypoxia that explicated the episodic hypoxia at Klang estuary. As Klang estuary supports aquaculture and cockle culture, our results could help protect the aquaculture and cockle culture industry here.


Subject(s)
Estuaries , Rivers , Chlorophyll A , Environmental Monitoring , Humans , Hypoxia , Nutrients , Seasons
18.
ACS Synth Biol ; 9(4): 804-813, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32196315

ABSTRACT

TelN and tos are a unique DNA linearization unit isolated from bacteriophage N15. While being transferable, the TelN cleaving-rejoining activities remained stable to function on tos in both bacterial and mammalian environments. However, TelN contribution in linear plasmid replication in mammalian cells remains unknown. Herein, we investigated the association of TelN in linear tos-containing DNA (tos-DNA) replication in mammalian cells. Additionally, the mammalian origin of replication (ori) that is well-known to initiate the replication event of plasmid vectors was also studied. In doing so, we identified that both TelN and mammalian initiation sites were essential for the replication of linear tos-DNA, determined by using methylation sensitive DpnI/MboI digestion and polymerase chain reaction (PCR) amplification approaches. Furthermore, we engineered the linear tos-DNA to be able to retain in mammalian cells using S/MAR technology. The resulting S/MAR containing tos-DNA was robust for at least 15 days, with (1) continuous tos-DNA replication, (2) correct splicing of gene transcripts, and (3) stable exogenous gene expression that was statistically comparable to the endogenous gene expression level. Understanding the activities of TelN and tos in mammalian cells can potentially provide insights for adapting this simple DNA linearization unit in developing novel genetic engineering tools, especially to the eukaryotic telomere/telomerase study.


Subject(s)
DNA Replication/genetics , Enzyme Precursors/genetics , Genetic Engineering/methods , Telomerase/genetics , Viral Proteins/genetics , Bacteriophages/genetics , DNA, Viral/chemistry , DNA, Viral/genetics , DNA, Viral/metabolism , Enzyme Precursors/metabolism , HeLa Cells , Humans , Matrix Attachment Regions/genetics , Plasmids/genetics , Telomerase/metabolism , Viral Proteins/metabolism
19.
Article in English | MEDLINE | ID: mdl-32023897

ABSTRACT

Southeast Asian countries including Malaysia play a major role in global drug trade and abuse. Use of amphetamine-type stimulants has increased in the past decade in Malaysia. This study aimed to apply wastewater-based epidemiology for the first time in Kuala Lumpur, Malaysia, to estimate the consumption of common illicit drugs in urban population. Influent wastewater samples were collected from two wastewater treatment plants in Kuala Lumpur in the summer of 2017. Concentrations of twenty-four drug biomarkers were analyzed for estimating drug consumption. Fourteen drug residues were detected with concentrations of up to 1640 ng/L. Among the monitored illicit drugs, 3,4-methylenedioxy-methamphetamine (MDMA) or ecstasy had the highest estimated per capita consumptions. Consumption and dose of amphetamine-type stimulants (methamphetamine and MDMA) were both an order of magnitude higher than those of opioids (heroin and codeine, methadone and tramadol). Amphetamine-type stimulants were the most prevalent drugs, replacing opioids in the drug market. The prevalence trend measured by wastewater-based epidemiology data reflected the shift to amphetamine-type stimulants as reported by the Association of Southeast Asian Nations Narcotics Cooperation Center. Most of the undetected drug residues were new psychoactive substances (NPSs), suggesting a low prevalence of NPSs in the drug market.


Subject(s)
Illicit Drugs/analysis , Substance Abuse Detection/methods , Wastewater/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Humans , Malaysia , Substance-Related Disorders/epidemiology , Wastewater/statistics & numerical data , Water Pollution, Chemical/statistics & numerical data
20.
Sci Total Environ ; 688: 1335-1347, 2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31726563

ABSTRACT

The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMXr) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L-1 with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMXr-bacteria (107 CFU mL-1) and SRGs (10-1/16S copies mL-1). Pearson correlation showed only positive correlation between the PO4 and SMXr-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMXr-bacteria and SRGs in the river.


Subject(s)
Drug Resistance, Bacterial/genetics , Environmental Monitoring , Rivers/microbiology , Sulfonamides/analysis , Water Pollutants, Chemical/analysis , Genes, Bacterial , Rivers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...