Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(6): e27752, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38560675

ABSTRACT

This study worked with Chunghwa Telecom to collect data from 17 rooftop solar photovoltaic plants installed on top of office buildings, warehouses, and computer rooms in northern, central and southern Taiwan from January 2021 to June 2023. A data pre-processing method combining linear regression and K Nearest Neighbor (k-NN) was proposed to estimate missing values for weather and power generation data. Outliers were processed using historical data and parameters highly correlated with power generation volumes were used to train an artificial intelligence (AI) model. To verify the reliability of this data pre-processing method, this study developed multilayer perceptron (MLP) and long short-term memory (LSTM) models to make short-term and medium-term power generation forecasts for the 17 solar photovoltaic plants. Study results showed that the proposed data pre-processing method reduced normalized root mean square error (nRMSE) for short- and medium-term forecasts in the MLP model by 17.47% and 11.06%, respectively, and also reduced the nRMSE for short- and medium-term forecasts in the LSTM model by 20.20% and 8.03%, respectively.

2.
iScience ; 26(10): 107874, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37860755

ABSTRACT

According to statistics, low-temperature waste heat below 300°C accounts for more than 89% of industrial waste heat. If the waste heat is not recycled, a large amount of low-temperature waste heat will be released into the atmosphere, thereby exacerbating global warming and posing a significant threat to human survival. Although the power generation efficiency of solid-state thermoelectric generation technology is lower than the organic Rankine cycle, it only requires a smaller construction area, which increases its market acceptance, applicability, and penetration. Especially in the pursuit of net-zero emissions by global companies, the importance of low-temperature waste heat recovery and power generation is even more prominent. The current thermoelectric conversion efficiency of commercial thermoelectric chips is about 5%. Power generation cost, thermoelectric conversion efficiency, and energy use efficiency are highly correlated with the commercialization of solid-state thermoelectric technology. This research shares five practical waste heat power generation cases commercialized by recycling three heat sources. It also points out the three significant challenges facing the commercialization of power generation from low-temperature waste heat recovery. This study analyzes 2,365 TEG patents submitted by 28 companies worldwide to determine the basic technology for realizing waste heat recovery through TEG and explore the potential commercialization of related waste heat recovery products. The future challenge for the large-scale commercialization of solid-state thermoelectric technology is not technological development but financial incentives related to changes in international energy prices and subsidies that promote zero carbon emissions.

3.
Sensors (Basel) ; 14(2): 3578-603, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24561405

ABSTRACT

Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit.

4.
Sensors (Basel) ; 13(6): 7797-812, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23778192

ABSTRACT

Transport stations such as airports, ports, and railways have adopted blocked-type pathway management to process and control travel systems in a one-directional manner. However, this excludes highway transportation where large buses have great variability and mobility; thus, an instant influx of numerous buses increases risks and complicates station management. Focusing on Taipei Bus Station, this study employed RFID technology to develop a system platform integrated with modern information technology that has numerous characteristics. This modern information technology comprised the following systems: ultra-high frequency (UHF) radio-frequency identification (RFID), ultrasound and license number identification, and backstage graphic controls. In conclusion, the system enabled management, bus companies, and passengers to experience the national bus station's new generation technology, which provides diverse information and synchronization functions. Furthermore, this technology reached a new milestone in the energy-saving and efficiency-increasing performance of Taiwan's buses.

5.
Sensors (Basel) ; 13(5): 6811-31, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23698273

ABSTRACT

It is easy to measure energy consumption with a power meter. However, energy savings cannot be directly computed by the powers measured using existing power meter technologies, since the power consumption only reflects parts of the real energy flows. The International Performance Measurement and Verification Protocol (IPMVP) was proposed by the Efficiency Valuation Organization (EVO) to quantify energy savings using four different methodologies of A, B, C and D. Although energy savings can be estimated following the IPMVP, there are limitations on its practical implementation. Moreover, the data processing methods of the four IPMVP alternatives use multiple sensors (thermometer, hygrometer, Occupant information) and power meter readings to simulate all facilities, in order to determine an energy usage benchmark and the energy savings. This study proposes a simple sensor platform to measure energy savings. Using usually the Electronic Product Code (EPC) global standard, an architecture framework for an information system is constructed that integrates sensors data, power meter readings and occupancy conditions. The proposed sensor platform is used to monitor a building with a newly built vertical garden system (VGS). A VGS shields solar radiation and saves on energy that would be expended on air-conditioning. With this platform, the amount of energy saved in the whole facility is measured and reported in real-time. The data are compared with those obtained from detailed measurement and verification (M&V) processes. The discrepancy is less than 1.565%. Using measurements from the proposed sensor platform, the energy savings for the entire facility are quantified, with a resolution of ±1.2%. The VGS gives an 8.483% daily electricity saving for the building. Thus, the results show that the simple sensor platform proposed by this study is more widely applicable than the four complicated IPMVP alternatives and the VGS is an effective tool in reducing the carbon footprint of a building.

6.
Sens Actuators B Chem ; 183: 434-440, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-32288243

ABSTRACT

This research reports the design, analysis, integration, and test of a prototype of a real-time convective polymerase chain reaction (RT-cPCR) machine that uses a color charged coupled device (CCD) for detecting the emission of fluorescence intensity from an RT-cPCR mix in a microliter volume glass capillary. Because of its simple mechanism, DNA amplification involves employing the cPCR technique with no need for thermocycling control. The flow pattern and temperature distribution can greatly affect the cPCR process in the capillary tube, a computational fluid dynamics (CFD) simulation was conducted in this study for the first time to estimate the required period of an RT-cPCR cycle. This study also tested the PCR mix containing hepatitis B virus (HBV) plasmid samples by using SYBR Green I fluorescence labeling dye to assess the prototype performance. The measured results from the image-processing scheme indicate that the RT-cPCR prototype with a CCD-based fluorometer can achieve similar DNA quantification reproducibility compared to commercial machines, even when the initial DNA concentration in the test PCR mix is reduced to 10 copies/µL.

7.
Sensors (Basel) ; 12(1): 24-41, 2012.
Article in English | MEDLINE | ID: mdl-22368456

ABSTRACT

Installation of a Wireless and Powerless Sensing Node (WPSN) inside a spindle enables the direct transmission of monitoring signals through a metal case of a certain thickness instead of the traditional method of using connecting cables. Thus, the node can be conveniently installed inside motors to measure various operational parameters. This study extends this earlier finding by applying this advantage to the monitoring of spindle systems. After over 2 years of system observation and optimization, the system has been verified to be superior to traditional methods. The innovation of fault diagnosis in this study includes the unmatched assembly dimensions of the spindle system, the unbalanced system, and bearing damage. The results of the experiment demonstrate that the WPSN provides a desirable signal-to-noise ratio (SNR) in all three of the simulated faults, with the difference of SNR reaching a maximum of 8.6 dB. Following multiple repetitions of the three experiment types, 80% of the faults were diagnosed when the spindle revolved at 4,000 rpm, significantly higher than the 30% fault recognition rate of traditional methods. The experimental results of monitoring of the spindle production line indicated that monitoring using the WPSN encounters less interference from noise compared to that of traditional methods. Therefore, this study has successfully developed a prototype concept into a well-developed monitoring system, and the monitoring can be implemented in a spindle production line or real-time monitoring of machine tools.


Subject(s)
Equipment Failure Analysis/instrumentation , Equipment Failure Analysis/methods , Signal Processing, Computer-Assisted/instrumentation , Wireless Technology/instrumentation , Acceleration , Computer Simulation , Signal-To-Noise Ratio , Spectrum Analysis , Statistics as Topic , Time Factors , Vibration
8.
Sensors (Basel) ; 12(12): 16116-43, 2012 Nov 22.
Article in English | MEDLINE | ID: mdl-23443370

ABSTRACT

Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.


Subject(s)
Algorithms , Electricity , Wireless Technology , Computer Communication Networks , Humans , Radio Frequency Identification Device , Telemetry/instrumentation , Telemetry/methods , Temperature
9.
Nanoscale Res Lett ; 6(1): 264, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21711784

ABSTRACT

This study investigated a simple model of transformers that have liquid magnetic cores with different concentrations of ferro-nanofluids. The simple model was built on a capillary by enamel-insulated wires and with ferro-nanofluid loaded in the capillary. The ferro-nanofluid was fabricated by a chemical co-precipitation method. The performances of the transformers with either air core or ferro-nanofluid at different concentrations of nanoparticles of 0.25, 0.5, 0.75, and 1 M were measured and simulated at frequencies ranging from 100 kHz to 100 MHz. The experimental results indicated that the inductance and coupling coefficient of coils grew with the increment of the ferro-nanofluid concentration. The presence of ferro-nanofluid increased resistance, yielding to the decrement of the quality factor, owing to the phase lag between the external magnetic field and the magnetization of the material.

10.
Sensors (Basel) ; 11(2): 2013-34, 2011.
Article in English | MEDLINE | ID: mdl-22319396

ABSTRACT

Wireless sensor network (WSN) technology has been successfully applied to energy saving applications in many places, and plays a significant role in achieving power conservation. However, previous studies do not discuss WSN costs and cost-recovery. The application of WSNs is currently limited to research and laboratory experiments, and not mass industrial production, largely because business owners are unfamiliar with the possible favorable return and cost-recovery on WSN investments. Therefore, this paper focuses on the cost-recovery of WSNs and how to reduce air conditioning energy consumption in convenience stores. The WSN used in this study provides feedback to the gateway and adopts the predicted mean vote (PMV) and computational fluid dynamics (CFD) methods to allow customers to shop in a comfortable yet energy-saving environment. Four convenience stores in Taipei have used the proposed WSN since 2008. In 2008, the experiment was initially designed to optimize air-conditioning for energy saving, but additions to the set-up continued beyond 2008, adding the thermal comfort and crowds peak, off-peak features in 2009 to achieve human-friendly energy savings. Comparison with 2007 data, under the same comfort conditions, shows that the power savings increased by 40% (2008) and 53% (2009), respectively. The cost of the WSN equipment was 500 US dollars. Experimental results, including three years of analysis and calculations, show that the marginal energy conservation benefit of the four convenience stores achieved energy savings of up to 53%, recovering all costs in approximately 5 months. The convenience store group participating in this study was satisfied with the efficiency of energy conservation because of the short cost-recovery period.


Subject(s)
Commerce/economics , Computer Communication Networks/economics , Computer Communication Networks/instrumentation , Conservation of Energy Resources/economics , Wireless Technology/economics , Wireless Technology/instrumentation , Air Conditioning/economics , Computer Simulation , Electricity , Humans , Hydrodynamics , Taiwan , Thermodynamics
11.
Sensors (Basel) ; 10(1): 146-66, 2010.
Article in English | MEDLINE | ID: mdl-22315532

ABSTRACT

The chip-based polymerase chain reaction (PCR) system has been developed in recent years to achieve DNA quantification. Using a microstructure and miniature chip, the volume consumption for a PCR can be reduced to a nano-liter. With high speed cycling and a low reaction volume, the time consumption of one PCR cycle performed on a chip can be reduced. However, most of the presented prototypes employ commercial fluorimeters which are not optimized for fluorescence detection of such a small quantity sample. This limits the performance of DNA quantification, especially low experiment reproducibility. This study discusses the concept of a chip-oriented fluorimeter design. Using the analytical model, the current study analyzes the sensitivity and dynamic range of the fluorimeter to fit the requirements for detecting fluorescence in nano-liter volumes. Through the optimized processes, a real-time PCR on a chip system with only one nano-liter volume test sample is as sensitive as the commercial real-time PCR machine using the sample with twenty micro-liter volumes. The signal to noise (S/N) ratio of a chip system for DNA quantification with hepatitis B virus (HBV) plasmid samples is 3 dB higher. DNA quantification by the miniature chip shows higher reproducibility compared to the commercial machine with respect to samples of initial concentrations from 10(3) to 10(5) copies per reaction.


Subject(s)
DNA/analysis , DNA/genetics , Fluorometry/instrumentation , Microarray Analysis/instrumentation , Microchemistry/instrumentation , Polymerase Chain Reaction/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Nanotechnology/instrumentation
12.
Sensors (Basel) ; 10(1): 697-718, 2010.
Article in English | MEDLINE | ID: mdl-22315563

ABSTRACT

Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.


Subject(s)
Computer-Aided Design , DNA/analysis , DNA/genetics , Oligonucleotide Array Sequence Analysis/instrumentation , Real-Time Polymerase Chain Reaction/instrumentation , Computer Systems , Equipment Design , Equipment Failure Analysis
13.
Sensors (Basel) ; 10(9): 8161-72, 2010.
Article in English | MEDLINE | ID: mdl-22163647

ABSTRACT

An on-chip transformer with a ferrofluid magnetic core has been developed and tested. The transformer consists of solenoid-type coil and a magnetic core of ferrofluid, with the former fabricated by MEMS technology and the latter by a chemical co-precipitation method. The performance of the MEMS transformer with a ferrofluid magnetic core was measured and simulated with frequencies ranging from 100 kHz to 100 MHz. Experimental results reveal that the presence of the ferrofluid increases the inductance of coils and the coupling coefficient of transformer; however, it also increases the resistance owing to the lag between the external magnetic field and the magnetization of the material.


Subject(s)
Ferric Compounds/chemistry , Magnetite Nanoparticles/chemistry , Micro-Electrical-Mechanical Systems/instrumentation , Microtechnology/instrumentation , Electric Conductivity , Electromagnetic Fields , Equipment Design , Hydrophobic and Hydrophilic Interactions , Nanotechnology/instrumentation , Oils/chemistry , Surface-Active Agents/chemistry
14.
Biomed Microdevices ; 11(2): 359-67, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18975094

ABSTRACT

A new micromachined circulating polymerase chain reaction (PCR) chip is reported in this study. A novel liquid transportation mechanism utilizing a suction-type membrane and three microvalves were used to create a new microfluidic control module to rapidly transport the DNA samples and PCR reagents around three bio-reactors operating at three different temperatures. When operating at a membrane actuation frequency of 14.29 Hz and a pressure of 5 psi, the sample flow rate in the microfluidic control module can be as high as 18 microL/s. In addition, an array-type microheater was adopted to improve the temperature uniformity in the reaction chambers. Open-type reaction chambers were designed to facilitate temperature calibration. Experimental data from infrared images showed that the percentage of area inside the reaction chamber with a thermal variation of less than 1 degrees C was over 90% for a denaturing temperature of 94 degrees C. Three array-type heaters and temperature sensors were integrated into this new circulating PCR chip to modulate three specific operating temperatures for the denaturing, annealing, and extension steps of a PCR process. With this approach, the cycle numbers and reaction times of the three separate reaction steps can be individually adjusted. To verify the performance of this circulating PCR chip, a PCR process to amplify a detection gene (150 base pairs) associated with the hepatitis C virus was performed. Experimental results showed that DNA samples with concentrations ranging from 10(5) to 10(2)copies/microL can be successfully amplified. Therefore, this new circulating PCR chip may provide a useful platform for genetic identification and molecular diagnosis.


Subject(s)
Chemical Fractionation/instrumentation , Flow Injection Analysis/instrumentation , Microfluidic Analytical Techniques/instrumentation , RNA/genetics , RNA/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Suction/instrumentation , Chemical Fractionation/methods , Equipment Design , Equipment Failure Analysis , Flow Injection Analysis/methods , Heating/instrumentation , Membranes, Artificial , Micro-Electrical-Mechanical Systems/instrumentation , Micro-Electrical-Mechanical Systems/methods , Microfluidic Analytical Techniques/methods , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity , Suction/methods
15.
Biomed Microdevices ; 10(1): 47-54, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17665308

ABSTRACT

This paper presents a flexible wetness sensor whose detection signal, converted to a binary code, is transmitted through radio-frequency (RF) waves from a radio-frequency identification integrated circuit (RFID IC) to a remote reader. The flexible sensor, with a fixed operating frequency of 13.56 MHz, contains a RFID IC and a sensor circuit that is fabricated on a flexible printed circuit board (FPCB) using a Micro-Electro-Mechanical-System (MEMS) process. The sensor circuit contains a comb-shaped sensing area surrounded by an octagonal antenna with a width of 2.7 cm. The binary code transmitted from the RFIC to the reader changes if the surface conditions of the detector surface changes from dry to wet. This variation in the binary code can be observed on a digital oscilloscope connected to the reader.


Subject(s)
Biosensing Techniques/methods , Radio Waves , Oscillometry , Surface Properties , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...