Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Agric Food Chem ; 69(30): 8492-8503, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34282904

ABSTRACT

(-)-α-Bisabolol is a functional ingredient in various health and cosmetic products and has antibacterial, anti-inflammatory, and wound healing properties. (-)-α-Bisabolol is chemically synthesized and produced by steam distillation of essential oils extracted from Brazilian Candeia (Eremanthus erythropappus). To sustainably produce pure (-)-α-bisabolol, we previously engineered Escherichia coli to produce 9.1 g/L (-)-α-bisabolol via heterologous mevalonate pathways and (-)-α-bisabolol synthase (BOS) from German chamomile, Matricaria recutita (MrBOS). BOS has only been reported in MrBOS and Brazilian Candeia (EeBOS). The limited availability of BOS has made it difficult to achieve high titer and yield and large-scale (-)-α-bisabolol production. We identified a novel BOS in globe artichoke (CcBOS) and examined its functionality in vitro and in vivo. CcBOS showed higher catalytic efficiency and (-)-α-bisabolol production rates than those from MrBOS or EeBOS. In fed-batch fermentation, CcBOS generated the highest reported (-)-α-bisabolol titer to date (23.4 g/L). These results may facilitate economically viable industrial (-)-α-bisabolol production.


Subject(s)
Cynara scolymus , Cynara , Scolymus , Sesquiterpenes , Brazil , Cynara scolymus/genetics , Escherichia coli/genetics , Monocyclic Sesquiterpenes
SELECTION OF CITATIONS
SEARCH DETAIL