Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Biomacromolecules ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717957

ABSTRACT

This study aimed to visualize the microstructures of starch hydrogels using synchrotron-based X-ray micro-computed tomography (µCT). Waxy maize starch (WMS, 3.3% amylose, db), pea starch (PS, 40.3% amylose), and high-amylose maize starch (HMS, 63.6% amylose) were cooked at 95 and 140 °C to prepare starch hydrogels. WMS and HMS failed to form a gel after 95 °C cooking and storage, while PS developed a firm gel. At 140 °C cooking, HMS of a high amylose nature was fully gelatinized and generated a rigid gel with the highest strength. Both scanning electron microscopy (SEM) and µCT revealed the unique structural features of various starch hydrogels/pastes prepared at different temperatures, which were greatly affected by the degree of swelling and dispersity of the starches. As a nondestructive method, µCT showed certain advantages over SEM, including minimal shrinkage of the hydrogels, relatively simple sample preparation, and allowing for three-dimensional reconstruction of the hydrogel microstructure. This study indicated that synchrotron-based µCT could be a useful technique in visualizing biopolymer-based hydrogels.

2.
Mater Today Bio ; 26: 101055, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38693995

ABSTRACT

Recently, interest in cancer immunotherapy has increased over traditional anti-cancer therapies such as chemotherapy or targeted therapy. Natural killer (NK) cells are part of the immune cell family and essential to tumor immunotherapy as they detect and kill cancer cells. However, the disadvantage of NK cells is that cell culture is difficult. In this study, porous microgels have been fabricated using microfluidic channels to effectively culture NK cells. Microgel fabrication using microfluidics can be mass-produced in a short time and can be made in a uniform size. Microgels consist of photo cross-linkable polymers such as methacrylic gelatin (GelMa) and can be regulated via controlled GelMa concentrations. NK92 cell-laden three-dimensional (3D) microgels increase mRNA expression levels, NK92 cell proliferation, cytokine release, and anti-tumor efficacy, compared with two-dimensional (2D) cultures. In addition, the study confirms that 3D-cultured NK92 cells enhance anti-tumor effects compared with enhancement by 2D-cultured NK92 cells in the K562 leukemia mouse model. Microgels containing healthy NK cells are designed to completely degrade after 5 days allowing NK cells to be released to achieve cell-to-cell interaction with cancer cells. Overall, this microgel system provides a new cell culture platform for the effective culturing of NK cells and a new strategy for developing immune cell therapy.

3.
Pharmacol Res Perspect ; 12(2): e1194, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573021

ABSTRACT

The SARS-CoV-2 caused COVID-19 pandemic has posed a global health hazard. While some vaccines have been developed, protection against viral infection is not perfect because of the urgent approval process and the emergence of mutant SARS-CoV-2 variants. Here, we employed UDCA as an FXR antagonist to regulate ACE2 expression, which is one of the key pathways activated by SARS-CoV-2 Delta variant infection. UDCA is a well-known reagent of liver health supplements and the only clinically approved bile acid. In this paper, we investigated the protective efficacy of UDCA on Omicron variation, since it has previously been verified for protection against Delta variant. When co-housing with an Omicron variant-infected hamster group resulted in spontaneous airborne transmission, the UDCA pre-supplied group was protected from weight loss relative to the non-treated group at 4 days post-infection by more than 5%-10%. Furthermore, UDCA-treated groups had a 3-fold decrease in ACE2 expression in nasal cavities, as well as reduced viral expressing genes in the respiratory tract. Here, the data show that the UDCA serves an alternative option for preventive drug, providing SARS-CoV-2 protection against not only Delta but also Omicron variant. Our results of this study will help to propose drug-repositioning of UDCA from liver health supplement to preventive drug of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/therapeutic use , Angiotensin-Converting Enzyme 2/genetics , Pandemics
4.
Light Sci Appl ; 13(1): 90, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622155

ABSTRACT

The examination of entanglement across various degrees of freedom has been pivotal in augmenting our understanding of fundamental physics, extending to high dimensional quantum states, and promising the scalability of quantum technologies. In this paper, we demonstrate the photon number path entanglement in the frequency domain by implementing a frequency beam splitter that converts the single-photon frequency to another with 50% probability using Bragg scattering four-wave mixing. The two-photon NOON state in a single-mode fiber is generated in the frequency domain, manifesting the two-photon interference with two-fold enhanced resolution compared to that of single-photon interference, showing the outstanding stability of the interferometer. This successful translation of quantum states in the frequency domain will pave the way toward the discovery of fascinating quantum phenomena and scalable quantum information processing.

5.
J Environ Manage ; 356: 120578, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547826

ABSTRACT

Domestic organic waste resources have increased over the past decade and treatment of this waste via co-digested biogasification facilities is increasing annually. However, inspection standards for such facilities are not well-established. Herein, we aimed to derive calculation formulas and factors related to organic matter decomposition efficiency and methane production rate in accordance with waste treatment facility inspection standards. We also aimed to determine the optimum waste mixing ratio. Sample (field) surveys of 18 treatment facilities and complete enumeration of 110 facilities were conducted. Calculation formulas and factors were derived using the survey data and biochemical methane potential (BMP) test. The calculated coefficients derived through the BMP test were 0.512 m3 CH4/kgVSin for food waste, 0.601 m3 CH4/kgVSin for livestock manure, and 0.382 m3 CH4/kgVSin for sewage sludge. The final derived calculation factors were 65.0% for food waste, 36.0% for livestock manure, and 20.0% for sewage sludge for organic matter decomposition efficiency, and 0.380 m3 CH4/kgVSin for food waste, 0.27 m3 CH4/kgVSin for livestock manure, and 0.140 m3 CH4/kgVSin for sewage sludge for methane production rates. The derived effective capacity calculation factors can be utilized in future waste treatment facility inspection methods by aiding in the establishment of appropriate inspection standards for co-digested biogasification facilities other than single food waste treatment facilities. In addition, the optimum mixing ratio can be used as design data for co-digested biogasification facilities.


Subject(s)
Refuse Disposal , Sewage , Sewage/chemistry , Anaerobiosis , Food , Manure/analysis , Bioreactors , Food Loss and Waste , Methane/analysis , Digestion , Republic of Korea
6.
Food Chem ; 447: 138896, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38458133

ABSTRACT

Dehulled pea, lentil, and faba bean grains were milled into flours with 0.5- to 2.5-mm sieves. As the particle size decreased, damaged-starch contents of the flours from the same pulse crop increased. At a holding temperature of 95 °C in RVA, peak and final viscosities and gelling ability of the flours generally increased as the particle size decreased. When the holding temperature increased from 95 to 140 °C, pasting viscosities of pea and lentil flours and gel hardness of lentil flours gradually decreased. In contrast, pasting viscosities and gel hardness of faba bean flours reached the highest values at 120 °C. The comparison of the pulse flours varying in particle size across the three market classes revealed that coarse particles comprising agglomerated starch, protein, and dietary fiber (i.e., particles of the second peak in the bimodal particle-size distribution curves) showed significant correlations with certain important functional properties of pulse flours.


Subject(s)
Lens Plant , Vicia faba , Temperature , Heating , Flour/analysis , Starch , Particle Size , Gels
7.
Int J Biol Macromol ; 262(Pt 2): 130194, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360222

ABSTRACT

Gelatin methacrylate (GelMA) bioink has been widely used in bioprinting because it is a printable and biocompatible biomaterial. However, it is difficult to print GelMA bioink without any temperature control because it has a thermally-sensitive rheological property. Therefore, in this study, we developed a temperature-controlled printing system in real time without affecting the viability of the cells encapsulated in the bioink. In addition, a skin-derived decellularized extracellular matrix (SdECM) was printed with GelMA to better mimic the native tissue environment compared with solely using GelMA bioink with the enhancement of structural stability. The temperature setting accuracy was calculated to be 98.58 ± 1.8 % for the module and 99.48 ± 1.33 % for the plate from 5 °C to 37 °C. The group of the temperature of the module at 10 °C and the plate at 20 °C have 93.84 % cell viability with the printable range in the printability window. In particular, the cell viability and proliferation were increased in the encapsulated fibroblasts in the GelMA/SdECM bioink, relative to the GelMA bioink, with a morphology that significantly spread for seven days. The gene expression and growth factors related to skin tissue regeneration were relatively upregulated with SdECM components. In the bioprinting process, the rheological properties of the GelMA/SdECM bioink were successfully adjusted in real time to increase printability, and the native skin tissue mimicked components providing tissue-specific biofunctions to the encapsulated cells. The developed bioprinting strategies and bioinks could support future studies related to the skin tissue reconstruction, regeneration, and other medical applications using the bioprinting process.


Subject(s)
Gelatin , Tissue Scaffolds , Tissue Scaffolds/chemistry , Gelatin/chemistry , Methacrylates/chemistry , Printing, Three-Dimensional , Biocompatible Materials , Tissue Engineering
8.
Int J Biol Macromol ; 263(Pt 2): 130320, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412933

ABSTRACT

Angelica gigas (A. gigas) is traditional medicinal herb that mainly exists in Korea and northeastern China. There have been relatively few studies conducted thus far on its polysaccharides and their bioactivities. We purified and described a novel water-soluble polysaccharide derived from A. gigas and investigated its immunoenhancing properties. The basic components of crude and purified polysaccharides (F1 and F2) were total sugar (41.07% - 70.55%), protein (1.12-10.33%), sulfate (2.9-5.5%), and uronic acids (0.5-31.05%) in total content. Our results demonstrated that the crude and fractions' molecular weights (Mw) varied from 42.2 to 285.2 × 103 g/mol. As the most effective polysaccharide, F2 significantly stimulated RAW264.7 cells to release nitric oxide (NO) and express several cytokines. Furthermore, F2 increased the expression of tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-É£), natural killer cytotoxicity receptors (NKp44), and granzyme-B in NK-92 cells and enhanced the cytotoxicity against HCT-116 cells. In our experiments, we found that F2 stimulated RAW264.7 cells and NK-92 cells via MAPK and NF-κB pathways. The monosaccharide and methylation analysis of the high immunostimulant F2 polysaccharide findings revealed that the polysaccharide was primarily composed of 1 â†’ 4, 1 â†’ 6, 1 â†’ 3, 6, 1 â†’ 3 and 1 â†’ 3, 4, 6 galactopyranose residues, 1 â†’ 3 arabinofuranose residues, 1 â†’ 4 glucopyranose residues. These results demonstrated that the F2 polysaccharide of A. gigas which possesses potential immunostimulatory attributes, could be used to create a novel functional food.


Subject(s)
Angelica , NF-kappa B , Animals , Mice , Humans , NF-kappa B/metabolism , HCT116 Cells , Macrophage Activation , RAW 264.7 Cells , Signal Transduction , Killer Cells, Natural/metabolism , Polysaccharides/chemistry
9.
Front Cell Neurosci ; 18: 1334244, 2024.
Article in English | MEDLINE | ID: mdl-38419656

ABSTRACT

Introduction: Enhancer of zeste homolog 2 (Ezh2) is responsible for trimethylation of histone 3 at lysine 27 (H3K27me3), resulting in repression of gene expression. Here, we explore the role of Ezh2 in forebrain GABAergic interneuron development. Methods: We removed Ezh2 in the MGE by generating Nkx2-1Cre;Ezh2 conditional knockout mice. We then characterized changes in MGE-derived interneuron fate and electrophysiological properties in juvenile mice, as well as alterations in gene expression, chromatin accessibility and histone modifications in the MGE. Results: Loss of Ezh2 increases somatostatin-expressing (SST+) and decreases parvalbumin-expressing (PV+) interneurons in the forebrain. We observe fewer MGE-derived interneurons in the first postnatal week, indicating reduced interneuron production. Intrinsic electrophysiological properties in SST+ and PV+ interneurons are normal, but PV+ interneurons display increased axonal complexity in Ezh2 mutant mice. Single nuclei multiome analysis revealed differential gene expression patterns in the embryonic MGE that are predictive of these cell fate changes. Lastly, CUT&Tag analysis revealed that some genomic loci are particularly resistant or susceptible to shifts in H3K27me3 levels in the absence of Ezh2, indicating differential selectivity to epigenetic perturbation. Discussion: Thus, loss of Ezh2 in the MGE alters interneuron fate, morphology, and gene expression and regulation. These findings have important implications for both normal development and potentially in disease etiologies.

10.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256169

ABSTRACT

Graphislactone A (GPA), a secondary metabolite derived from a mycobiont found in the lichens of the genus Graphis, exhibits antioxidant properties. However, the potential biological functions and therapeutic applications of GPA at the cellular and animal levels have not yet been investigated. In the present study, we explored the therapeutic potential of GPA in mitigating non-alcoholic fatty liver disease (NAFLD) and its underlying mechanisms through a series of experiments using various cell lines and animal models. GPA demonstrated antioxidant capacity on a par with that of vitamin C in cultured hepatocytes and reduced the inflammatory response induced by lipopolysaccharide in primary macrophages. However, in animal studies using an NAFLD mouse model, GPA had a milder impact on liver inflammation while markedly attenuating hepatic steatosis. This effect was confirmed in an animal model of early fatty liver disease without inflammation. Mechanistically, GPA inhibited lipogenesis rather than fat oxidation in cultured hepatocytes. Similarly, RNA sequencing data revealed intriguing associations between GPA and the adipogenic pathways during adipocyte differentiation. GPA effectively reduced lipid accumulation and suppressed lipogenic gene expression in AML12 hepatocytes and 3T3-L1 adipocytes. In summary, our study demonstrates the potential application of GPA to protect against hepatic steatosis in vivo and suggests a novel role for GPA as an underlying mechanism in lipogenesis, paving the way for future exploration of its therapeutic potential.


Subject(s)
Antioxidants , Non-alcoholic Fatty Liver Disease , Animals , Mice , Antioxidants/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Lipogenesis , Diet , Inflammation
11.
bioRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37162909

ABSTRACT

Human genome sequencing studies have identified numerous loci associated with complex diseases. However, translating human genetic and genomic findings to disease pathobiology and therapeutic discovery remains a major challenge at multiscale interactome network levels. Here, we present a deep-learning-based ensemble framework, termed PIONEER (Protein-protein InteractiOn iNtErfacE pRediction), that accurately predicts protein binding partner-specific interfaces for all known protein interactions in humans and seven other common model organisms, generating comprehensive structurally-informed protein interactomes. We demonstrate that PIONEER outperforms existing state-of-the-art methods. We further systematically validated PIONEER predictions experimentally through generating 2,395 mutations and testing their impact on 6,754 mutation-interaction pairs, confirming the high quality and validity of PIONEER predictions. We show that disease-associated mutations are enriched in PIONEER-predicted protein-protein interfaces after mapping mutations from ~60,000 germline exomes and ~36,000 somatic genomes. We identify 586 significant protein-protein interactions (PPIs) enriched with PIONEER-predicted interface somatic mutations (termed oncoPPIs) from pan-cancer analysis of ~11,000 tumor whole-exomes across 33 cancer types. We show that PIONEER-predicted oncoPPIs are significantly associated with patient survival and drug responses from both cancer cell lines and patient-derived xenograft mouse models. We identify a landscape of PPI-perturbing tumor alleles upon ubiquitination by E3 ligases, and we experimentally validate the tumorigenic KEAP1-NRF2 interface mutation p.Thr80Lys in non-small cell lung cancer. We show that PIONEER-predicted PPI-perturbing alleles alter protein abundance and correlates with drug responses and patient survival in colon and uterine cancers as demonstrated by proteogenomic data from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium. PIONEER, implemented as both a web server platform and a software package, identifies functional consequences of disease-associated alleles and offers a deep learning tool for precision medicine at multiscale interactome network levels.

12.
Int J Biol Macromol ; 257(Pt 1): 128585, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056734

ABSTRACT

Currently, commercial sunscreens cause a number of biotoxicity and environmental issues, making it imperative to develop biocompatible alternatives. In this study, we aimed to develop an alternative sunscreen from two ecofriendly and biocompatible natural polyphenolic compounds, tannic acid (TA) and quercetin (Que). The sunscreen was prepared through a simple process using an oil-in-water emulsion as the medium and hyaluronic acid (HA) as the base polymer to improve biocompatibility. The HA/TA/Que. sunscreen prepared in this study exhibits 0 % transmittance in the UVB region and <15 % transmittance in the UVA region, resulting in excellent sun-protection properties (SPF 30). Remarkably, the as-prepared HA/TA/Que. sunscreen has a suitable viscosity and similar UV protection properties to those of commercial sunscreens. The HA/TA/Que. sunscreen also exhibits 90.4 % antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl, demonstrating an ability to effectively capture reactive oxygen species that directly affect the skin. In addition, the cell viability was >90 % at a concentration of 50 µg/mL after 7 days, indicating excellent cytocompatibility. Owing to its various advantageous features, the HA/TA/Que. sunscreen with excellent sun protection properties and multiple functionalities is expected to resolve many environmental and biological issues caused by commercial sunscreens.


Subject(s)
Quercetin , Sunscreening Agents , Sunscreening Agents/pharmacology , Quercetin/pharmacology , Hyaluronic Acid , Ultraviolet Rays , Skin , Polyphenols
13.
Article in English | MEDLINE | ID: mdl-37919891

ABSTRACT

Background: Chronic kidney disease is a significant health burden worldwide, with increasing incidence. Although several genome-wide association studies (GWAS) have investigated single nucleotide polymorphisms (SNP) associated with kidney trait, most studies were focused on European ancestry. Methods: We utilized clinical and genetic information collected from the Korean Genome and Epidemiology Study (KoGES). Results: More than five million SNPs from 58,406 participants were analyzed. After meta-GWAS, 1,360 loci associated with estimated glomerular filtration rate (eGFR) at a genome-wide significant level (p = 5 × 10-8) were identified. Among them, 399 loci were validated with at least one other biomarker (blood urea nitrogen [BUN] or eGFRcysC) and 149 loci were validated using both markers. Among them, 18 SNPs (nine known ones and nine novel ones) with 20 putative genes were found. The aggregated effect of genes estimated by MAGMA gene analysis showed that these significant genes were enriched in kidney-associated pathways, with the kidney and liver being the most enriched tissues. Conclusion: In this study, we conducted GWAS for more than 50,000 Korean individuals and identified several variants associated with kidney traits, including eGFR, BUN, and eGFRcysC. We also investigated functions of relevant genes using computational methods to define putative causal variants.

14.
Polymers (Basel) ; 15(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37896351

ABSTRACT

The polyethylene lithium-ion battery separator is coated with a polymer by means of a roll-to-roll (R2R) gravure coating scheme to enhance the thermal stability. The polyvinylidene fluoride (PVDF) or polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) is gravure-coated, and the pores are fabricated based on online nonsolvent-induced phase separation (NIPS). N-methylpyrrolidone is used as a solvent, and deionized water or a methanol mixture thereof is exploited as a nonsolvent in NIPS. Scanning electron microscopy confirms that the polymer film is formed and that the pores are well developed. The thermal shrinkage decreased by 20.0% and 23.2% compared to that of the bare separator due to the coating of PVDF and PVDF-HFP, respectively. The R2R gravure coating scheme is proven to be fully functional to tailor the properties of lithium-ion battery separators.

15.
Mater Today Bio ; 21: 100685, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37545560

ABSTRACT

Extrusion-based bioprinting technology is widely used for tissue regeneration and reconstruction. However, the method that uses only hydrogel as the bioink base material exhibits limited biofunctional properties and needs improvement to achieve the desired tissue regeneration. In this study, we present a three-dimensionally printed bioactive microparticle-loaded scaffold for use in bone regeneration applications. The unique structure of the microparticles provided sustained release of growth factor for > 4 weeks without the use of toxic or harmful substances. Before and after printing, the optimal particle ratio in the bioink for cell viability demonstrated a survival rate of ≥ 85% over 7 days. Notably, osteogenic differentiation and mineralization-mediated by human periosteum-derived cells in scaffolds with bioactive microparticles-increased over a 2-week interval. Here, we present an alternative bioprinting strategy that uses the sustained release of bioactive microparticles to improve biofunctional properties in a manner that is acceptable for clinical bone regeneration applications.

16.
Chem Biol Drug Des ; 102(4): 889-906, 2023 10.
Article in English | MEDLINE | ID: mdl-37571867

ABSTRACT

A water-soluble polysaccharide (GFP) was isolated from Grateloupia filicina and fractionated using a DEAE Sepharose Fast Flow column to evaluate immunostimulatory activity. Carbohydrates (62.0%-68.4%) and sulfates (29.3%-34.3%) were the major components of GFP and its fractions (GFP-1 and GFP-2), with relatively lower levels of proteins (4.5%-15.4%) and uronic acid (1.4%-3.9%). The average molecular weight (Mw ) for GFP and its fractions was calculated between 98.2%-243.7 kDa. The polysaccharides were composed of galactose (62.1%-87.2%), glucose (4.5%-33.2%), xylose (3.1%-5.3%), mannose (1.4%-2.2%), rhamnose (1.2%-2.0%), and arabinose (0.9%-1.7%) units connected through →3)-Galp-(1→, →4)-Galp-(1→, →2)-Galp-(1→, →6)-Galp-(1→, →3,4)-Galp -(1→, →3,6)-Galp-(1→, →4,6)-Galp-(1→, →3,4,6)-Galp-(1→, →2,3)-Galp-(1→, →2,4)-Galp-(1→, →4)-Glcp-(1→, →6)-Glcp-(1→ and →4,6)-Glcp-(1→residues. The isolated polysaccharides effectively induced RAW264.7 murine macrophages by releasing nitric oxide (NO) and various cytokines via nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Further, the expression of toll-like receptor-2 (TLR-2) and TLR-4 in RAW264.7 cells indicated their activation through TLR-2 and TLR-4 binding receptors. Among the polysaccharides, GFP-1 highly stimulated the activation of RAW264.7 cells, which was mainly constituted of (→1) terminal-D-galactopyranosyl, (1→3)-linked-ᴅ-galactopyranosyl, (1→4)-linked-ᴅ-galactopyranosyl and (1→3,4) -linked-ᴅ-galactopyranosyl residues. These findings demonstrate that GFP-1 from G. filicina are effective at stimulating the immune system and this warrants further investigation to determine potential biomedical applications.


Subject(s)
Seaweed , Animals , Mice , Galactans/chemistry , Galactans/pharmacology , Polysaccharides/chemistry , RAW 264.7 Cells , Seaweed/chemistry , Seaweed/metabolism , Toll-Like Receptor 2 , Toll-Like Receptor 4/metabolism
17.
IEEE J Biomed Health Inform ; 27(9): 4421-4432, 2023 09.
Article in English | MEDLINE | ID: mdl-37310830

ABSTRACT

Breast ultrasound (BUS) image segmentation is a critical procedure in the diagnosis and quantitative analysis of breast cancer. Most existing methods for BUS image segmentation do not effectively utilize the prior information extracted from the images. In addition, breast tumors have very blurred boundaries, various sizes and irregular shapes, and the images have a lot of noise. Thus, tumor segmentation remains a challenge. In this article, we propose a BUS image segmentation method using a boundary-guided and region-aware network with global scale-adaptive (BGRA-GSA). Specifically, we first design a global scale-adaptive module (GSAM) to extract features of tumors of different sizes from multiple perspectives. GSAM encodes the features at the top of the network in both channel and spatial dimensions, which can effectively extract multi-scale context and provide global prior information. Moreover, we develop a boundary-guided module (BGM) for fully mining boundary information. BGM guides the decoder to learn the boundary context by explicitly enhancing the extracted boundary features. Simultaneously, we design a region-aware module (RAM) for realizing the cross-fusion of diverse layers of breast tumor diversity features, which can facilitate the network to improve the learning ability of contextual features of tumor regions. These modules enable our BGRA-GSA to capture and integrate rich global multi-scale context, multi-level fine-grained details, and semantic information to facilitate accurate breast tumor segmentation. Finally, the experimental results on three publicly available datasets show that our model achieves highly effective segmentation of breast tumors even with blurred boundaries, various sizes and shapes, and low contrast.


Subject(s)
Breast Neoplasms , Ultrasonography, Mammary , Humans , Female , Ultrasonography , Semantics , Image Processing, Computer-Assisted
18.
Biomater Res ; 27(1): 60, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349810

ABSTRACT

BACKGROUND: Patients face a serious threat if a solid tumor leaves behind partial residuals or cannot be completely removed after surgical resection. Immunotherapy has attracted attention as a method to prevent this condition. However, the conventional immunotherapy method targeting solid tumors, that is, intravenous injection, has limitations in homing in on the tumor and in vivo expansion and has not shown effective clinical results. METHOD: To overcome these limitations, NK cells (Natural killer cells) were encapsulated in micro/macropore-forming hydrogels using 3D bioprinting to target solid tumors. Sodium alginate and gelatin were used to prepare micro-macroporous hydrogels. The gelatin contained in the alginate hydrogel was removed because of the thermal sensitivity of the gelatin, which can generate interconnected micropores where the gelatin was released. Therefore, macropores can be formed through bioprinting and micropores can be formed using thermally sensitive gelatin to make macroporous hydrogels. RESULTS: It was confirmed that intentionally formed micropores could help NK cells to aggregate easily, which enhances cell viability, lysis activity, and cytokine release. Macropores can be formed using 3D bioprinting, which enables NK cells to receive the essential elements. We also characterized the functionality of NK 92 and zEGFR-CAR-NK cells in the pore-forming hydrogel. The antitumor effects on leukemia and solid tumors were investigated using an in vitro model. CONCLUSION: We demonstrated that the hydrogel encapsulating NK cells created an appropriate micro-macro environment for clinical applications of NK cell therapy for both leukemia and solid tumors via 3D bioprinting. 3D bioprinting makes macro-scale clinical applications possible, and the automatic process shows potential for development as an off-the-shelf immunotherapy product. This immunotherapy system could provide a clinical option for preventing tumor relapse and metastasis after tumor resection. Micro/macropore-forming hydrogel with NK cells fabricated by 3D bioprinting and implanted into the tumor site.

19.
Medicine (Baltimore) ; 102(21): e33786, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37233435

ABSTRACT

RATIONALE: Although regional metastasis to the lymph nodes is common in advanced oral cancer, extensive local invasion into surrounding structures such as the mandible, skin and soft tissue of the neck, and masticator space is relatively rare. Sometimes surgical treatment cannot be performed and only palliative chemotherapy and radiation therapy are offered to preserve the quality of life of patients with advanced oral cancer. Nevertheless, the surgical resection of tumors remains the most effective treatment. This study presents a case of aggressive mouth floor cancer in which extensive composite defects on the mouth floor, oral mucosa, mandible, skin and soft tissue of the neck caused by tumor resection were reconstructed. PATIENT CONCERNS: A 66-year-old man and a 65-year-old man with no significant personal or family history visited our clinic due to a large and multiple masses on the floor of the mouth and both sides of the neck. DIAGNOSIS: Histopathological evaluation of the biopsy specimen revealed squamous cell carcinoma. INTERVENTIONS: A fibula osteocutaneous free flap and customized titanium plate were used for the intraoral lining. Mandibular reconstruction was performed using a 3D-printed bone model, and an anterolateral thigh free flap was used to resurface the anterior of the neck. OUTCOMES: Reconstruction using this method was successful, and excellent functional and aesthetic outcomes were achieved without cancer recurrence. LESSONS: This study show that the reconstruction of extensive composite defects of the oral mucosa, mandible, and neck soft tissue following surgical resection of mouth floor cancer can be performed in a single-stage operation. Through a single-stage reconstruction, both excellent functional aspects without cancer recurrence and satisfactory aesthetic outcomes can be obtained.


Subject(s)
Carcinoma, Squamous Cell , Free Tissue Flaps , Mouth Neoplasms , Plastic Surgery Procedures , Male , Humans , Aged , Fibula/surgery , Free Tissue Flaps/surgery , Mouth Floor/surgery , Mouth Floor/pathology , Quality of Life , Neoplasm Recurrence, Local/pathology , Mandible/surgery , Mandible/pathology , Mouth Neoplasms/surgery , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/surgery , Carcinoma, Squamous Cell/pathology
20.
Front Microbiol ; 14: 1086962, 2023.
Article in English | MEDLINE | ID: mdl-36876058

ABSTRACT

Microbial fuel cells (CS-UFC) utilize waste resources containing biodegradable materials that play an essential role in green energy. MFC technology generates "carbon-neutral" bioelectricity and involves a multidisciplinary approach to microbiology. MFCs will play an important role in the harvesting of "green electricity." In this study, a single-chamber urea fuel cell is fabricated that uses these different wastewaters as fuel to generate power. Soil has been used to generate electrical power in microbial fuel cells and exhibited several potential applications to optimize the device; the urea fuel concentration is varied from 0.1 to 0.5 g/mL in a single-chamber compost soil urea fuel cell (CS-UFC). The proposed CS-UFC has a high power density and is suitable for cleaning chemical waste, such as urea, as it generates power by consuming urea-rich waste as fuel. The CS-UFC generates 12 times higher power than conventional fuel cells and exhibits size-dependent behavior. The power generation increases with a shift from the coin cell toward the bulk size. The power density of the CS-UFC is 55.26 mW/m2. This result confirmed that urea fuel significantly affects the power generation of single-chamber CS-UFC. This study aimed to reveal the effect of soil properties on the generated electric power from soil processes using waste, such as urea, urine, and industrial-rich wastewater as fuel. The proposed system is suitable for cleaning chemical waste; moreover, the proposed CS-UFC is a novel, sustainable, cheap, and eco-friendly design system for soil-based bulk-type design for large-scale urea fuel cell applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...