Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Photodiagnosis Photodyn Ther ; 48: 104262, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945385

ABSTRACT

BACKGROUND: Distinguishing between discoloration caused by caries and organic stains is challenging for dentists in clinical settings. Biofluorescence (BF)-bleaching assesses caries lesions by evaluating BF changes after removing organic stains through dental bleaching, leaving cariogenic discoloration. This study aimed to apply BF-bleaching to a simulation model mimicking cariogenic discoloration and compare the BF color changes between organic staining and cariogenic discoloration. METHODS: Thirty artificial caries lesions in bovine incisors were equally divided into three groups: non-stained (NS), organic-stained (OS), and cariogenic-stained (CS) groups. The specimens were treated with bleaching agent, then BF color of each specimen was evaluated using red BF intensity (ΔR), BF hue angle (h°), and hyperspectral BF spectrum. RESULTS: The ΔR of CS was approximately 2.74 and 1.73 times higher than that of OS, at baseline and after bleaching for 20 min, respectively. After 20 min of bleaching, the h° of CS increased by approximately 8.1° compared to the baseline, while maintaining the red BF hue range (345‒15°). In contrast, the BF hue of OS shifted from orange (15‒45°) to yellow (45‒75°) simultaneously, and the h° change was approximately 21.9°. Both CS and OS exhibited first emission peaks near 515 nm, and CS showed second peaks in the red range (620‒780 nm). After bleaching, the first peaks were restored to the sound enamel direction (peak at 486 nm), whereas the second peaks of red BF in CS were maintained. CONCLUSION: Applying BF-bleaching to discolored caries lesions allowed differentiation between cariogenic discoloration and organic staining based on BF color changes.


Subject(s)
Dental Caries , Tooth Bleaching Agents , Tooth Bleaching , Tooth Discoloration , Cattle , Animals , Tooth Bleaching/methods , Tooth Bleaching Agents/pharmacology , Fluorescence , In Vitro Techniques
2.
Sci Rep ; 14(1): 9066, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643213

ABSTRACT

This in vitro study aimed to evaluate the feasibility of quantitative light-induced fluorescence (QLF) technology for detecting the presence and severity of microleakage of pit and fissure sealants. The areas of interest (AOIs) were 160 pits and fissures of 40 extracted permanent teeth. Fluorescent images were acquired using a QLF device, and the maximum fluorescence loss ΔFmax of each AOI was analyzed. After staining and cross-sectioning of the teeth, histological dye penetration was scored on a scale of 0 to 3. The relationship between ΔFmax and microleakage depth was analyzed, and the areas under the curve (AUCs) were calculated. The │ΔFmax│ increased as microleakage depth increased. The ΔFmax values of microleakage areas showed a strong significant correlation with the histological scores of dye penetration (r = - 0.72, P = 0.001). AUC analysis showed a high diagnostic accuracy for microleakage depth (AUC = 0.83-0.91). The highest AUC of 0.91 was found when differentiating the outer half microleakage of the sealant (histological score 0 vs. 1-3). QLF technology is effective in assessing the presence and severity of microleakage, suggesting its potential for noninvasive detection and monitoring of sealant microleakage in clinical settings.


Subject(s)
Pit and Fissure Sealants , Quantitative Light-Induced Fluorescence , Research Design , Coloring Agents , Staining and Labeling
3.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673942

ABSTRACT

Soluble epoxide hydrolase (sEH) is an enzyme targeted for the treatment of inflammation and cardiovascular diseases. Activated inflammatory cells produce nitric oxide (NO), which induces oxidative stress and exacerbates inflammation. We identify an inhibitor able to suppress sEH and thus NO production. Five flavonoids 1-5 isolated from Inula britannica flowers were evaluated for their abilities to inhibit sEH with IC50 values of 12.1 ± 0.1 to 62.8 ± 1.8 µM and for their effects on enzyme kinetics. A simulation study using computational chemistry was conducted as well. Furthermore, five inhibitors (1-5) were confirmed to suppress NO levels at 10 µM. The results showed that flavonoids 1-5 exhibited inhibitory activity in all tests, with compound 3 exhibiting the most significant efficacy. Thus, in the development of anti-inflammatory inhibitors, compound 3 is a promising natural candidate.


Subject(s)
Epoxide Hydrolases , Flavonoids , Inula , Nitric Oxide , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Animals , Nitric Oxide/metabolism , Mice , RAW 264.7 Cells , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Inula/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Kinetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Flowers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL