Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 339: 122763, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37852315

ABSTRACT

Prior studies have successfully used manganese oxides to facilitate the transformation of tetracycline in aqueous solution. To further understand the kinetic and the transformation pathway of tetracycline via birnessite (δ-MnO2) under different conditions, experiments were conducted at pH levels of 3, 6, and 9 in the presence or absence of Aldrich humic acid (ADHA). Tetracycline removal followed the pseudo-second-order reaction model in all investigated cases, and the removal efficiency (g mg-1 h -1) followed the following trend: pH 3 (0.45/0.27) > pH 6 (0.036/0.087) > pH 9 (0.036/0.103) in the absence/presence of ADHA. Liquid chromatography-mass spectrometry/mass spectrometry results identified five main transformation products at m/z 495, 477, 493, 459, and 415, produced by the transformation reactions, including hydration, oxidation, desaturation, and oxy reduction. Notably, in the presence of ADHA at pH 3, products with higher toxicity secondary (m/z 477 and 495) were reduced, while less toxicity products (m/z 459 and 415) were enhanced. The experiments utilizing tetracycline and δ-MnO2 with varied humic acids (HA) revealed that HA with high polar organic carbon groups, such as O-alkyl, exhibited higher removal efficiency at pH 6. This research offers the first comprehensive insights into the pathway transformations of tetracycline via δ-MnO2 under different pH conditions and HA types. For further understanding, future work should investigate the binding of HA, TTC, and/or Mn2+ and the oxidation capacity of MnO2 after the reaction to clarify Mn2+ elution mechanisms.


Subject(s)
Humic Substances , Oxides , Oxides/chemistry , Manganese Compounds/chemistry , Oxidation-Reduction , Anti-Bacterial Agents , Tetracycline , Kinetics
2.
Sci Total Environ ; 875: 162530, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36871741

ABSTRACT

Total organic carbon (TOC) analysis with accurate determination of particulate organic carbon (POC) content in suspended solids (SS) containing water is critical for evaluating the environmental impact of particulate organic pollutants in water and calculating the carbon cycle mass balance. TOC analysis is divided into the non-purgeable organic carbon (NPOC) and differential (known as TC-TIC) methods; although the selection of method is greatly affected by the sample matrix characteristics of SS, no studies have investigated this. This study quantitatively evaluates the effect of SS containing inorganic carbon (IC) and purgeable organic carbon (PuOC), as well as that of sample pretreatment, on the accuracy and precision of TOC measurement in both methods for various environmental water sample types (12 wastewater influents and effluents and 12 types of stream water). For influent and stream water with high SS, the TC-TIC method expressed 110-200 % higher TOC recovery than that for the NPOC method due to POC component losses in SS owing to its conversion into PuOC during sample pretreatment (using ultrasonic) and subsequent loss in the NPOC purging process. Correlation analysis confirmed that particulated organic matter (POM, mg/L) content in SS directly affected this difference (r > 0.74, p < 0.01, n = 24); for POC water samples (those containing >10 mg/L of POM) featuring purgeable dissolved organic matter, TC-TIC was appropriate in securing TOC measurement accuracy. In constrast, in effluent and stream water with low SS (i.e., < ∼5 mg/L) and high IC (> 70 %) contents, the TOC measurement ratios (TC-TIC/NPOC) of both methods were similar, between 0.96 and 1.08, suggesting that NPOC is appropriate for improving precision. Our results provide useful basic data to establish the most reliable TOC analysis method considering SS contents and its properties along with the matrix characteristics of the sample.

3.
Sci Total Environ ; 857(Pt 2): 159506, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36257441

ABSTRACT

Particulate organic matter (POM) in water systems can be converted into dissolved organic matter (DOM) through various pathways depending on its properties and transformation. Thus, information on the behavior of POM is crucial for fully understanding water systems and the carbon cycle. In this study, the effects of particle size and the source of POM, as well as photochemical and microbial changes in DOM characteristics subsequently released from POM were evaluated using various spectral indices, excitation-emission matrix combined with parallel factor analysis components, and principal component analysis. The amount of dissolved organic carbon (DOC) released from POM during suspension was significantly associated with the carbon content of POM (p < 0.05). The amount of DOC (mg-C/g-SS) decreased in mineral-bound POM as a result of microbial degradation but increased in biogenic POM as a result of microbial dissolution, owing to the structural differences in organic matter from different sources. Mineral-bound POM showed more DOC production by photochemical desorption than microbial degradation, whereas biogenic POM displayed the opposite trend. The DOM derived from fine POM had more humified terrestrial humic-like substances than those derived from coarse POM. Principal components 1 and 2 were associated with DOC production and degree of humification, respectively. The increase in the degree of aromaticity and humification of organic matter was higher in mineral-bound POM by photochemical desorption of highly humified organic matter and in the biogenic POM by microbial dissolution. In conclusion, this study was able to provide basic information on the transformation of POM, thus, it is expected to broaden the knowledge of the biogeochemical cycle of organic matter.


Subject(s)
Humic Substances , Particulate Matter , Particulate Matter/analysis , Spectrometry, Fluorescence , Humic Substances/analysis , Factor Analysis, Statistical , Water
4.
Nutrients ; 14(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36364945

ABSTRACT

Akebia quinata, commonly called chocolate vine, has various bioactivities, including antioxidant and anti-obesity properties. However, the anti-obesity effects of bioconverted extracts of A. quinate have not been examined. In this study, A. quinata fruit extracts was bioconverted using the enzyme isolated from the soybean paste fungi Aspergillus kawachii. To determine whether the bioconversion process could influence the anti-obesity effects of A. quinata fruit extracts, we employed 3T3-L1 adipocytes and HFD-induced obese rats. We observed that the bioconverted fruit extract of A. quinata (BFE) afforded anti-obesity effects, which were stronger than that for the non-bioconverted fruit extract (FE) of A. quinata. In 3T3-L1 adipocytes, treatment with BFE at concentrations of 20 and 40 µg reduced intracellular lipids by 74.8 (p < 0.05) and 54.9% (p < 0.01), respectively, without inducing cytotoxicity in preadipocytes. Moreover, the oral administration of BFE at the concentration of 300 mg/kg/day significantly reduced body and adipose tissue weights (p < 0.01) in HFD-induced obese rats. Plasma cholesterol values were reduced, whereas HDL was increased in BFE receiving rats. Although FE could exert anti-obesity effects, BFE supplementation induced more robust effects than FE. These results could be attributed to the bioconversion-induced alteration of bioactive compound content within the extract.


Subject(s)
Anti-Obesity Agents , Diet, High-Fat , Mice , Rats , Animals , Diet, High-Fat/adverse effects , Anti-Obesity Agents/pharmacology , Adipogenesis , Fruit , 3T3-L1 Cells , Obesity/drug therapy , Obesity/etiology , Plant Extracts/pharmacology , Mice, Inbred C57BL
5.
Environ Res ; 211: 113037, 2022 08.
Article in English | MEDLINE | ID: mdl-35248562

ABSTRACT

Sediment humins are extremely important for binding hydrophobic organic contaminants in rivers and lakes. Nonetheless, little is known about their structure and binding. We, therefore, examined the structure and phenanthrene sorption affinity of sediment humin samples upstream, midstream, and downstream from two artificial lakes in South Korea by using the elemental 13C-NMR analysis, Freundlich model, and Langmuir model. The characteristics and phenanthrene sorption affinity of sediment humins were also compared with those of sediment humic acids from similar origins as well as soil humins/humic acids in South Korea from previous studies by using principal component analysis. In both lakes, downstream sediment humins exhibited lower N/C, O/C, and (N + O)/C ratios, lower internal oxidation, and higher aliphaticity due to the presence of long-chain aliphatic compounds generated during anaerobic decomposition. The principal component analysis results also showed that C,H-alkyl, O-alkyl, and polar organic carbon contents were significantly different when comparing the up-mid stream and downstream sediment samples in Daecheong Lake. In addition, midstream sediment humin in Andong Lake presented higher C,H-alkyl and lower polar organic carbon contents compared to those of up-downstream samples. In both lakes, the sorption coefficient and adsorption isotherm linearity were positively correlated with the C,H-alkyl content and negatively correlated with the O-aryl content. Similar to C,H-alkyl and POC, C,H-alkyl, and (N + O)/C had an extremely high correlation coefficient when predicting the sorption coefficient (Freundlich model) and the maximum adsorption capacity (Langmuir model) of sediment humins. Sediment humins had higher C,H-alkyl contents and lower sorption coefficients than those of sediment humic acids and soil humins/humic acids. These findings provide key information for monitoring water quality and polycyclic aromatic hydrocarbon contamination in South Korean lake sediments.


Subject(s)
Humic Substances , Phenanthrenes , Adsorption , Carbon , Geologic Sediments/analysis , Humic Substances/analysis , Lakes/analysis , Soil
6.
Article in English | MEDLINE | ID: mdl-35055454

ABSTRACT

In this study, spatial and temporal changes of eight water quality indicators and 30 types of hazardous substances including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, and inorganic matters for the small coastal streams along the West Coast of South Korea were investigated. In coastal streams with clear seasonal changes in water quality, larger watershed areas led to greater contamination by particulate matter (i.e., suspended solids, r = 0.89), and smaller watershed areas led to greater contamination by organic matter (i.e., BOD, r = -0.78). The concentration of VOCs and pesticides was higher in agricultural areas, and those of SVOCs and metals were often higher in urban areas. According to the principal component analysis (PCA), during the wet season, the fluctuation in the water quality of coastal streams was higher in urban areas than in agricultural areas. Furthermore, coastal streams in residential areas exhibited higher levels of SVOCs, and those in industrial areas exhibited higher levels of metallic substances. Based on these results, the spatial and temporal trends of water quality and hazardous substances were obtained according to watershed characteristics, thereby clarifying the pollution characteristics of small-scale coastal streams and the major influencing factors.


Subject(s)
Pesticides , Rivers , Environmental Monitoring/methods , Hazardous Substances/analysis , Pesticides/analysis , Water Quality
7.
J Environ Manage ; 299: 113651, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34474258

ABSTRACT

Various biochars (BCs) have been developed to remove heavy metals contained in road runoff; however, there is insufficient information regarding the competitive adsorption efficiency of modified BC with regard to heavy metals due to a lack of comparative evaluation based on BC properties and modification methods. In this study, three different types of BC (RBC: rice husk, WBC: wood chip, MBC: mixture) were modified following five different methods: acidic, alkaline, oxidic, and manganese oxide (MnOx) and iron oxide (FeOx) impregnation. The changes in the physicochemical and morphological properties of the modified BC were investigated, and the adsorption characteristics of three heavy metals (Cd, Pb, and Zn) under single and mixed conditions were compared and evaluated. The improvements in the BC properties varied for different BC types and modification methods; in particular, alkaline and manganese modification caused substantial the changes in the surface area and functional groups (such as aromatic ring, -OH, and Mn-O groups). The BC prepared by manganese oxide impregnation absorbed a high amount of heavy metals (>9.15 mg/g) even under mixed conditions through cation exchange and surface complexation. The distribution coefficient (Kd) of heavy metals was high in the order of Pb > Cd > Zn; thus, the adsorption of Pb replaced that of Zn in competitive adsorption due to the difference in their affinity to BC. Therefore, the results suggest that BC prepared by manganese oxide impregnation is suitable for removing heavy metals from road runoff, as it maintained high heavy metals adsorption regardless of the BC material, even under competitive conditions.


Subject(s)
Metals, Heavy , Oryza , Adsorption , Charcoal
8.
Sci Total Environ ; 790: 148142, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34380267

ABSTRACT

The effects of chlorination on 16 humic and fulvic acids (HAs and FAs, respectively) extracted from six different soil samples from Korea and two purchased soil samples (Canadian peat moss, Elliott Silt Loam Soil) were investigated to identify the changes in their structural characteristics and their effects on trihalomethane formation potential (THMFP) and haloacetic acid formation potential. The effect of chlorination was also investigated in fractionated samples (Aldrich HA, F1-F5) based on molecular weight (MW). Total organic carbon (TOC), specific UV absorbance (SUVA), fulvic-like fluorescence (%FLF), terrestrial humic-like fluorescence (%THLF), weight-average molecular weight (MWw), and carbon structures (13C NMR) were measured for each sample before and after chlorination, and factors relating to the chlorination mechanism were examined using principal component analysis (PCA). The results showed that the changes in the structural characteristics and the disinfection by-product formation of chlorinated HA and FA differed critically. For chlorinated HA, TOC and %FLF decreased due to oxidation, whereas %THLF was reduced via incorporation; MW also affected the structural changes and THMFP generation. In the PCA results, high SUVA, low MW, low N/C, and low O groups of aromatic C were associated with high THMFP production in HA, whereas low O groups of aliphatic C in FA were associated with both oxidation and incorporation in terms of THMFP. These results elucidate the mechanisms associated with the effects of chlorination in HA and FA and will support the prediction of THMFP generation in HA and FA based on their specific structural characteristics.


Subject(s)
Trihalomethanes , Water Purification , Canada , Disinfection , Halogenation , Humic Substances/analysis , Soil , Trihalomethanes/analysis
9.
Environ Pollut ; 283: 117395, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34030064

ABSTRACT

Particulate matter (PM) has long-term effects on water quality compared to dissolved matter (DM) during downstream transfer after inflows into an aquatic environment. In the present study, the characteristics, behavior, and effects of PM from an urban watershed under photo-irradiation were investigated through sequential resuspensions before being compared. Changes in the organic matter content, heavy metals (Mn, Fe, Zn, Pb), spectroscopic indices (SUVA254, slope ratio (SR), humidification index (HIX), fluorescence index (FI), and biological index (BIX)), excitation-emission matrix combined with parallel factor analysis components (EEM-PARAFAC), and disinfection by-product formation potential (DBPFP) were analyzed. According to our results, light enhanced the release of organic matter from PM but reduced dissolved heavy metals. The PMU affected by urban-derived pollutants (i.e., rainfall particles, road-deposited sediment, sewer-pipeline-deposited sediment) exhibited higher quantities of terrestrial humic-like organic matter than PMR, which contains base particles from riverines (i.e., soil, sediments). For the PMU, the humic-like fluorescent components (C1 and C2) enhanced under light conditions with every resuspension, whereas the components decreased in the PMR. Consistent with the PARAFAC results, the trihalomethane formation potential (THMFP) of the PMU was enhanced by approximately 2.8 times more than that of the PMR, and exhibited a high correlation with the fluorescent components (C1, r = 0.81, p < 0.001). The principal component analysis results also confirmed that the characteristics of dynamic exchanges between PM and DM were distinguished by PM sources and light, and the photo-released DM and their spectral characteristics displayed opposite behaviors depending on the PM sources during the sequential resuspensions.


Subject(s)
Humic Substances , Water Quality , Factor Analysis, Statistical , Humic Substances/analysis , Particulate Matter/analysis , Soil , Spectrometry, Fluorescence
10.
J Environ Manage ; 277: 111475, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33059326

ABSTRACT

In this study, a combined media filtration process with micro-flocculation (CMF) was developed, to simultaneously treat particulate and dissolved contaminants in urban road runoff. Dual-size foam glass media with stone and sand layers were applied and the efficiency of road runoff treatment was investigated according to filtration and micro-flocculation under various experimental conditions (stone/sand layer ratio, linear velocity, and coagulant types). Moreover, the removal efficiencies of suspended solids (SS), phosphorus, organic carbon, and heavy metals (Zn, Cu, Pb, Cd) by CMF were evaluated. The removal rate of SS was maintained to be above 84.1% for 1 h filtration by the dual-size foam glass, regardless of increasing pressure. The removal of phosphorus by micro-flocculation was more suitable in alum than ferric due to a higher initial floc growth rate and an increased particle size. The performance of the CMF was significantly improved over media filtration only process (MF) in removing both particulate and dissolved contaminants. The removal efficiency of all particulate pollutants by CMF was found to be more than 90%, and notably, the dissolved phosphorus, which was mostly not removed by MF, was also removed by 97.4%. Meanwhile, the backwash efficiency of CMF was half that of MF. Physical removal mechanisms, such as internal diffusion, dominated MF, whereas chemical removal mechanisms, such as adsorption and surface precipitation, dominated CMF. These results show the potential of the CMF process for the treatment of urban road runoff and identify the removal mechanisms of the filtration process that use micro-flocculation with dual-size foam glass.


Subject(s)
Water Pollutants, Chemical , Water Purification , Filtration , Flocculation , Phosphorus , Water Pollutants, Chemical/analysis
11.
Article in English | MEDLINE | ID: mdl-32640542

ABSTRACT

This study investigated the birnessite (δ-MnO2) catalyzed oxidative removal of 1,4-naphthoquinone (1,4-NPQ) in the presence of phenolic mediators; specifically, the kinetics of 1,4-NPQ removal under various conditions was examined, and the reaction pathway of 1,4-NPQ was verified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The removal rate of 1,4-NPQ by birnessite-catalyzed oxidation (pH = 5) was faster in the presence of phenolic mediators with electron-donating substituents (pseudo-first-order initial stage rate constant (k1) = 0.380-0.733 h-1) than with electron-withdrawing substituents (k1 = 0.071-0.244 h-1), and the effect on the substituents showed a positive correlation with the Hammett constant (Σσ) (r2 = 0.85, p < 0.001). The rate constants obtained using variable birnessite loadings (0.1-1.0 g L-1), catechol concentrations (0.1-1.0 mM), and reaction sequences indicate that phenolic mediators are the major limiting factor for the cross-coupling reaction of 1,4-NPQ in the initial reaction stages, whereas the birnessite-catalyzed surface reaction acts as the major limiting factor in the later reaction stages. This was explained by the operation of two different reaction mechanisms and reaction products identified by LC-MS/MS.


Subject(s)
Naphthoquinones/chemistry , Catalysis , Chromatography, Liquid , Kinetics , Manganese Compounds , Oxidation-Reduction , Oxides , Tandem Mass Spectrometry
12.
Article in English | MEDLINE | ID: mdl-32486395

ABSTRACT

This study was conducted to develop and validate a more reliable total organic carbon (TOC) analytical procedure for water samples containing suspended solids (SS). The effects of the combined ultrasonic and alkaline pretreatment (CULA) on the TOC measurement were studied in water samples containing SS from three origins (algae, sewage particles, and soil) under different analytical conditions (SS concentration, oxidation methods, and sieve size). The applicability of turbidity as a homogeneity index was also evaluated. With CULA, TOC recovery remained high (> 80%) for SS concentration ranges up to four times larger than ultrasonic pretreatment alone (UL) due to enhanced particulate organic carbon (POC) solubilization, and did not significantly differ depending on the oxidation methods, at low SS concentrations, or with varying sieve sizes. In particular, the turbidity change rate (i.e., NTU5/NTU0) of the pretreated water sample showed a high correlation with TOC precision (r2 = 0.73, p < 0.01), which suggests that turbidity can be used as an indicator of sample homogeneity. A novel TOC analytical procedure is expected to be useful for more accurate assessments of the impact of particulate pollutants on water quality than current methods, and for the analysis of the carbon cycle, including POCs, in the environment.


Subject(s)
Carbon , Sewage , Water Pollutants , Carbon/analysis , Carbon Cycle , Ultrasonics , Water Pollutants/analysis
13.
J Environ Sci (China) ; 90: 20-28, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32081316

ABSTRACT

In this study, we investigated the effect of sample pretreatments (ultrasonication and alkaline extraction) on total organic carbon (TOC) measurements for water samples containing suspended solids (SS) of four different origins (algae, soil, sewage sludge, and leaf litter) to more clearly assess the impact of particulate organic carbon (POC) in water. The effects each of ultrasonication (power, pulse, etc.) and alkaline extraction condition (concentration, time, etc.) on the TOC recovery and precision were investigated, and the results were compared with those of a new sample pretreatment method combining both methods. Alkaline treatment (0.01 mol/L NaOH) showed higher precision than ultrasonication (100/5 on/off pulse), and notably, the differences among the measured TOC values in samples of different origins were also further reduced in the alkaline treatment. This suggests that the ultrasonic pretreatment results can be mainly attributed to the increase in POC recovery through particle size reduction, whereas the alkaline treatment results are achieved through the enhancement of POC solubilization. It is also particularly noteworthy that a higher TOC recovery of 87.6% ± 7.4% with a higher precision of 8.4% could be obtained using the combined method, compared to each treatment (ultrasonic: TOC recovery 34.7%, relative standard deviation 63.1%; alkaline: 49.6% and 23.0%, respectively). Thus, simultaneous pretreatment with ultrasonication and alkaline extraction is expected to increase the oxidation rate of organic matter and the homogeneity of the samples, minimizing the loss of POC measurement values, and thereby improving the reliability of the TOC measurements of water samples containing SS.


Subject(s)
Sewage , Ultrasonics , Water Purification/methods , Carbon , Reproducibility of Results , Water
14.
Chemosphere ; 235: 586-595, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31276871

ABSTRACT

In this study, we investigated the photochemical release of dissolved organic matter (DOM) from the particulate organic matter (POM) of soil and litter leaves (broad leaves; coniferous leaves) and compared the releasing characteristics of the DOM using UV-visible and fluorescence spectroscopy. The disinfection by-product formation potential (DBPFP) of the released DOM was also examined. Additional dissolved organic carbon (DOC) was released by UV irradiation for all POM sources (10.58 ±â€¯2.7 mg-C L-1 g-1 for BL, 8.32 ±â€¯2.6 mg-C L-1 g-1 for CL, and 0.20 ±â€¯0.1 mg-C L-1 g-1 for soil). The excitation-emission matrix combined with parallel factor analysis results showed that the photo-released DOM from soil was mainly humic-like components (C1, C3) produced by photodesorption, resulting in high trihalomethane formation potential, while protein-like component (C2) was the major component of the photodissolved DOM from litter leaves, resulting in high haloaceticacid formation potential. Further, DBPFP from soil and litter leaves showed high correlation with humic-like components (C1+C3) and SUVA254, respectively. In conclusion, this study demonstrates that significant amounts of DOM could be released from POM under UV irradiation, although the characteristics and DBP formation of the photo-released DOM were highly dependent upon the POM source.


Subject(s)
Particulate Matter/analysis , Photochemical Processes , Disinfection , Factor Analysis, Statistical , Soil/chemistry , Spectrometry, Fluorescence/methods
15.
J Microbiol Biotechnol ; 28(2): 246-254, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29169218

ABSTRACT

Enzyme fermentation is a type of food processing technique generally used to improve the biological activities of food and herbal medicines. In this study, a Syzygii Flos (clove) extract was fermented using laccase derived from Trametes versicolor (LTV). The fermented clove extract showed greater neuroprotective effects against glutamate toxicity on HT22 than the non-fermented extract did. HPLC analysis revealed that the eugenol (1) and dehydrodieugenol (2) contents had decreased and increased, respectively, after fermentation. The content of 2 peaked at 1 h after fermentation to 103.50 ± 8.20 mg/gex (not detected at zero time), while that of 1 decreased to 79.54 ± 4.77 mg/gex (185.41 ± 10.16 mg/gex at zero time). Compound 2 demonstrated promising HT22 neuroprotective properties with inhibition of Ca2+ influx, the overproduction of intracellular reactive oxygen species, and lipid peroxidation. In addition, LTV showed the best fermentation efficacy compared with laccases derived from Pleurotus ostreatus and Rhus vernicifera.


Subject(s)
Eugenol/analogs & derivatives , Fermentation , Glutamic Acid/toxicity , Laccase/metabolism , Lignans/metabolism , Lignans/pharmacology , Plant Extracts/metabolism , Plant Extracts/pharmacology , Syzygium/chemistry , Animals , Cell Death/drug effects , Cell Line/drug effects , Cell Survival/drug effects , Eugenol/chemistry , Eugenol/metabolism , Eugenol/pharmacology , Fungal Proteins/metabolism , Lignans/chemistry , Lipid Peroxidation , Mice , Plants, Medicinal , Pleurotus/enzymology , Pleurotus/metabolism , Rats , Reactive Oxygen Species , Republic of Korea , Rhus/enzymology , Rhus/metabolism , Trametes/enzymology , Trametes/metabolism
16.
Int J Mol Sci ; 18(12)2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29206202

ABSTRACT

Orostachys japonicus A. Berger (), known as Wa-song in Korea, has been reported to exert various biological effects, such as anti-tumor, anti-oxidant, and anti-febrile effects. However, the anti-angiogenic effects of O.japonicus extracts remain to be investigated. In the present study, we demonstrated the anti-angiogenic effects of bioconverted O. japonicus extract (BOE) in Ms-1 mouse endothelial cells and compared them with the bioactivities of O. japonicus extract (OE). BOE, but not OE, were found to exert anti-angiogenic effects, including inhibition of cell migration, cell adhesion, tube formation of Ms-1 cells, and blood vessel formation of matrigel plug assay in vivo. Furthermore, protein levels of phosphorylated Src kinase were lower in BOE-treated cells than in OE-treated cells. Treatment with OE or BOE did not influence cell viability during the experimental period. Bioconverted extract of O.japonicus have anti-angiogenic effects in vitro and vivo, but non-bioconverted extract do not. We suggest that these observed anti-angiogenic effects are caused by the changes in the composition of bioactive compounds in the extracts as a result of biological conversion.


Subject(s)
Crassulaceae/chemistry , Endothelial Cells/cytology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Blotting, Western , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Endothelial Cells/drug effects , Male , Mice , Mice, Inbred C57BL , Radioimmunoprecipitation Assay
17.
Protein Expr Purif ; 132: 1-8, 2017 04.
Article in English | MEDLINE | ID: mdl-28042093

ABSTRACT

Human respiratory syncytial virus (HRSV) is a main cause of lower respiratory tract infections in infants and the elderly. Glycoprotein (G) is major antigen on the viral surface, and plays a key role for virus entry. Therefore, purification of the glycoprotein of HRSV is critical for the development of HRSV vaccine and serological diagnosis. In this study, we report the design and characterization of glycoprotein engineered rationally to enhance the protein solubility and to facilitate efficient purification. We permuted HRSV glycoproteins with two tags: (i) an immunoglobulin (Ig) M signal peptide and a protein A B domain tag to render HRSV glycoprotein secret into the culture media and (ii) a foldon and 6 × histidine tag with or without transmembrane domain. Three recombinant baculoviruses were constructed: (i) transmembrane-truncated HRSV glycoprotein (amino acid positions 66-298) inserted with the N-terminal IgM signal peptide and protein A B domain (MG-GΔTM), (ii) truncated HRSV glycoprotein (amino acid positions 66-298) fused with a C-terminal foldon and 6 × histidine tag (GΔTM-FH), and (iii) full-length HRSV glycoprotein (amino acid positions 1-298) fused with a C-terminal foldon and 6 × histidine tag (G-FH). Highly soluble recombinant MG-GΔTM protein was clearly purified using one-step affinity chromatography with IgG-sepharose resin, whereas the recombinant G-FH protein and truncated GΔTM-FH were purified partially using nickel-resin. Although, the antigenicity of GΔTM-FH was stronger than highly mannose-rich MG-GΔTM protein, MG-GΔTM induced neutralizing antibodies efficiently in the mice to protect from infectious HRSV.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Gene Expression , Glycoproteins , Respiratory Syncytial Viruses/genetics , Viral Proteins , Animals , Female , Glycoproteins/biosynthesis , Glycoproteins/genetics , Glycoproteins/immunology , Glycoproteins/isolation & purification , Humans , Immunization , Mice , Mice, Inbred BALB C , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Respiratory Syncytial Viruses/immunology , Sf9 Cells , Spodoptera , Viral Proteins/biosynthesis , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/isolation & purification
18.
Emerg Infect Dis ; 22(1): 100-4, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26691200

ABSTRACT

An outbreak of nosocomial infections with Middle East respiratory syndrome coronavirus occurred in South Korea in May 2015. Spike glycoprotein genes of virus strains from South Korea were closely related to those of strains from Riyadh, Saudi Arabia. However, virus strains from South Korea showed strain-specific variations.


Subject(s)
Genetic Variation/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/virology , Cross Infection/epidemiology , Cross Infection/virology , Disease Outbreaks , Humans , Male , Republic of Korea/epidemiology , Saudi Arabia/epidemiology
19.
Emerg Infect Dis ; 21(11): 2084-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26488745

ABSTRACT

In May 2015, Middle East respiratory syndrome coronavirus infection was laboratory confirmed in South Korea. Patients were a man who had visited the Middle East, his wife, and a man who shared a hospital room with the index patient. Rapid laboratory confirmation will facilitate subsequent prevention and control for imported cases.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus/pathogenicity , Cross Infection/virology , Travel , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Cross Infection/transmission , Humans , Male , Middle East , Republic of Korea/epidemiology
20.
Genome Announc ; 3(4)2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26272558

ABSTRACT

The full genome sequence of a Middle East respiratory syndrome coronavirus (MERS-CoV) was identified from cultured and isolated in Vero cells. The viral genome sequence has high similarity to 53 human MERS-CoVs, ranging from 99.5% to 99.8% at the nucleotide level.

SELECTION OF CITATIONS
SEARCH DETAIL
...