Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542752

ABSTRACT

Probiotic fermentation of plant-based materials can lead to the generation of various bioactive substances via bacterial metabolites and the biotransformation of phenolic compounds. We compared the metabolic differences between fermentation by Limosilactobacillus fermentum KCTC15072BP (LFG) and fermentation by Lactiplantibacillus plantarum KGMB00831 (LPG) in guava leaf extract (0%, 0.5%, and 2% (w/v))-supplemented medium via non-targeted metabolite profiling. By performing multivariate statistical analysis and comparing the different guava leaf extract groups, 21 guava-derived and 30 bacterial metabolites were identified. The contents of guava-derived glucogallin, gallic acid, and sugar alcohols were significantly higher in LFG than they were in LPG. Similarly, significantly higher contents of guava-derived pyrogallol, vanillic acid, naringenin, phloretin, and aromatic amino acid catabolites were obtained with LPG than with LFG. LFG led to significantly higher antioxidant activities than LPG, while LPG led to significantly higher antiglycation activity than LFG. Interestingly, the fermentation-induced increase in the guava-leaf-extract-supplemented group was significantly higher than that in the control group. Thus, the increased bioactivity induced by guava fermentation with the Lactobacillaceae strain may be influenced by the synergistic effects between microbial metabolites and plant-derived compounds. Overall, examining the metabolic changes in plant-based food fermentation by differentiating the origin of metabolites provides a better understanding of food fermentation.


Subject(s)
Limosilactobacillus fermentum , Psidium , Antioxidants/metabolism , Psidium/chemistry , Phenols/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry
2.
J Nutr Biochem ; 124: 109537, 2024 02.
Article in English | MEDLINE | ID: mdl-38030047

ABSTRACT

In this study, we investigated the protective effects of SM on skeletal muscle and brain damage by regulation of BDNF/PGC1α/irisin pathway via brain function related myokines in high-fat diet-induced OB mice. OB was induced by high-fat diet for 6 weeks. SM extract (SME) was administered with 200 mg/kg BW (LSM) and 500 mg/kg BW (HSM) by oral gavage every day for 12 weeks. Behavior tests such as grip strength, Y-maze, and passive avoidance test were conducted to analyze muscle and cognitive function. Histopathological changes in skeletal muscle and brain were examined by hematoxylin and eosin staining and the protein levels of biomarkers related to oxidative stress, inflammation, protein degradation, neuro-plasticity, and cell cycling were measured by western blot. SME regulated morphological changes (muscle cross-sectional area: 1.23%, 1.40%; density of neurons in hippocampus:1.74%, 1.73%) in T2DM mice. Importantly, SME supplementation significantly increased several muscle-derived myokines which might influence the expression of neuronal markers in OB mice (FGF21: 1.27%, 1.34%; PGC1α: 1.0%, 1.32%; IRISIN: 1.9%, 1.08%; BDNF: 1.35%, 1.23%). Accordingly, SME activated hippocampal neurotrophic factors including BDNF (1.0%, 1.2%) and its associated PGC1α/irisin pathway (PGC1α :1.1%, 1.1%; IRISIN:1.1%, 0.9%) significantly. This study demonstrated the possibliy that protective myokines increased by SME supplementation may contribute to neuro-protection in OB mice. Taken together, the current study suggests that SME can be used to prevent skeletal muscle and brain damage in OB by protecting against oxidative stress and inflammatin via modulation of the BDNF/PGC1α/irisin pathway in the therapeutic approach of obese patients.


Subject(s)
Fibronectins , Solanum melongena , Humans , Mice , Animals , Fibronectins/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Myokines , Mice, Obese , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Solanum melongena/metabolism , Diet, High-Fat/adverse effects , Muscle, Skeletal/metabolism , Brain/metabolism , Dietary Supplements
3.
Nutrients ; 15(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37299522

ABSTRACT

Type 2 diabetes mellitus (T2DM) is related with the incidence of sarcopenia and cognitive impairment that reduces quality of life in the elderly. Recent evidence has demonstrated that sarcopenia is associated with cognitive dysfunction, and muscle-derived endocrine factors might contribute to cognitive function by the skeletal muscle-brain endocrine loop. This study investigated the beneficial effects of Annona muricata (AM, graviola) on multi-organ energy metabolism with muscle-brain connectivity via brain function-related myokines in mice. Body composition, fasting blood glucose level, insulin, HbA1c%, histopathological changes, and the protein levels of insulin-signaling, energy metabolism, neuroprotection, inflammation, and protein-degradation pathways were measured. AM extract (AME) treatment selectively enhanced insulin signaling in the skeletal muscle and hippocampus of T2DM mice. Furthermore, AME treatment effectively increased muscle-derived fibroblast growth factor 21 (FGF21), cathepsin-B (CTSB), irisin, brain-derived neurotrophic factor (BDNF), and liver-derived FGF21 that contribute to whole-body energy homeostasis. In particular, AME increased the levels of circulating myokines (FGF21, BDNF, irisin, and CTSB), and these were accordance with the hippocampal neurotrophic factors (BDNF and CTSB) in T2DM mice. In conclusion, we suggest that AME would be a potential nutraceutical for improving the energy metabolism associated with muscle-brain connectivity via brain function-related myokines in T2DM.


Subject(s)
Annona , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Sarcopenia , Mice , Animals , Diabetes Mellitus, Type 2/complications , Brain-Derived Neurotrophic Factor/metabolism , Annona/metabolism , Diabetes Mellitus, Experimental/complications , Sarcopenia/complications , Fibronectins/metabolism , Quality of Life , Muscle, Skeletal/metabolism , Brain/metabolism , Insulin/metabolism , Dietary Supplements , Energy Metabolism
4.
Nutr Res ; 110: 1-13, 2023 02.
Article in English | MEDLINE | ID: mdl-36638746

ABSTRACT

Lespedeza bicolor (LB) is known to have antidiabetic activities; however, the underlying molecular mechanisms of LB in hyperglycemia-induced skeletal muscle damage is unclear. Inflammation and oxidative stress caused by type 2 diabetes mellitus (T2DM) not only contributes to insulin resistance, but also promotes muscle atrophy via decreased muscle protein synthesis and increased protein degradation, leading to frailty and sarcopenia. In this study, we hypothesized that LB extract (LBE) supplementatin has an ameliorative effect on hyperglycemia-induced skeletal muscle damage by activation of 5' adenosine monophosphate-activated protein kinase (AMPK)/sirtuin (SIRT)/proliferator-activated receptor γ coactivator 1α (PGC1α)-associated energy metabolism in mice with T2DM. Diabetes was induced by a high-fat diet with a 2-time streptozotoxin injection (30 mg/kg body weight) in male C57BL/6J mice. After diabetes was induced (fasting blood glucose level ≥140 mg/dL), the mice were administered with LBE at a low dose (100 mg/kg/d) or high dose (250 mg/kg/d) by gavage for 12 weeks. LBE supplementation ameliorated glucose tolerance and hemoglobin A1c (%) in mice with T2DM. Moreover, LBE supplementation upregulated protein levels of insulin receptor subunit-1 and Akt accompanied by increased translocation of glucose transporter 4 in mice with T2DM. Furthermore, LBE increased mitochondrial biogenesis by activating SIRT1, SIRT3, SIRT4, and peroxisome PGC1α in diabetic skeletal muscle. Meanwhile, LBE supplementation reduced oxidative stress and inflammation in mice with T2DM. Taken together, the current study suggested that LBE could be a potential therapeutic to prevent skeletal muscle damage by regulation AMPK/SIRT/PGC1α-related energy metabolism in T2DM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Hyperglycemia , Lespedeza , Plant Extracts , Animals , Male , Mice , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Dietary Supplements , Energy Metabolism , Hyperglycemia/metabolism , Lespedeza/chemistry , Mice, Inbred C57BL , Muscle, Skeletal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Plant Extracts/pharmacology
5.
Biomedicines ; 10(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36289794

ABSTRACT

Recently, it has been demonstrated that in sarcopenic obesity (SO), physical activity could improve cognitive functions. Moreover, previous studies suggested that muscle contraction could influence cognitive function via myokines. This study investigated the potential effects of resistant exercise on cognitive and muscle functions in SO. SO was induced by a high-fat diet treatment for 8 weeks in 8-month-old male C57BL/6J mice. Then, resistant exercise (ladder climbing) for 8 weeks was performed. Muscle and cognitive function tests and morphological analysis were conducted. The protein levels of myokines were investigated in muscle, plasma, and the hippocampus in sarcopenic obese mice. Muscle and cognitive functions were significantly elevated in the obesity-exercise group (EX) compared to the obesity-control group (OB). Interestingly, muscle function was positively correlated with cognitive function. Abnormal morphological changes in the hippocampus were ameliorated in EX compared to OB, but not in the muscle. Protein levels of cognitive function-related myokines and energy metabolism-related markers in EX were significantly elevated in both muscle and hippocampus compared to those in OB. Interestingly, the protein level of brain-derived neurotrophic factor (BDNF) in EX was simultaneously increased in all tissues including muscle, plasma, and hippocampus compared to that in OB. In conclusion, modulation of muscle-derived cognitive function-related myokines in various pathological conditions via a resistant exercise could be a possible way of relieving muscle and cognitive dysfunction.

6.
Front Pharmacol ; 13: 943879, 2022.
Article in English | MEDLINE | ID: mdl-36059993

ABSTRACT

Accumulation of glucose/sugar results in the formation of reactive di-carbonyl compounds such as MGO and GO that interact with several amino acids and proteins to form toxic advanced glycation end products (AGEs). Induction of AGEs breakdown can control symptoms and severity in T2DM and other related complications like NAFLD where AGEs are the key players. Therefore, an AGE cross-link breaker has been suggested for preventing the onset/progression of NAFLD. In this study, we reported novel synthetic naphthalene-2-acyl thiazolium derivatives (KHAGs). Among synthesized KHAG derivatives, we observed that a novel KHAG-04, a 1,4-dimethoxynaphthalen-2-acyl thiazolium salt which is an analog of alagebrium, dramatically cleaves MGO/GO-AGE cross-links, and it also inhibited inflammation by lowering the level of nitric oxide production and IL-1ß and TNF-α secretion in LPS and/or MGO-AGE-activated macrophage. Moreover, it also reduced FFA and MGO-AGE-induced lipogenesis in Hep-G2 cells. In mice, KHAG-04 significantly reduced the level of glyoxal in the liver, which was induced by DMC. Furthermore, KHAG-04 treatment significantly reduced blood glucose levels, lipid accumulation, and inflammation in the NAFLD/T2DM animal model. Novel KHAG-04-mediated induction of AGEs breakdown could be the possible reason for its anti-inflammatory, antihyperglycemic, and anti-lipidemic effects in cells and NAFLD in the T2DM animal model, respectively. Further research might explore the pharmacological efficacy and usefulness and consider the ability of this compound in the treatment strategy against various models of NAFLD in T2DM where MGO/GO-AGEs play a key role in the pathogenesis.

7.
Biomedicines ; 10(7)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35884825

ABSTRACT

BACKGROUND: Diabetes is highly prevalent, and the number of patients with diabetic sarcopenia and cognitive impairment has grown, leading to decreased quality of life. Although the exact mechanisms between sarcopenia and cognitive impairment have not been elucidated, it is speculated that muscle and liver-derived mediators might contribute to brain function. This study examined the molecular mechanisms associated with muscle-brain interaction accompanied by insulin resistance (IR) caused by aberrant energy metabolism via myokines/hepatokines in type 2 diabetes mellitus (T2DM) mice. METHODS: T2DM was induced by a high-fat diet and streptozotocin injection. Behavior tests were conducted to analyze grip strength and cognitive function. Histopathological changes in skeletal muscle and brain tissue were examined by hematoxylin and eosin staining and the protein levels of biomarkers related to energy metabolism via myokines/hepatokines were measured by western blot. RESULTS: T2DM caused peripheral and central IR. Furthermore, T2DM led to aberrant energy metabolism through the reduced fibroblast growth factor 21 dependent AMP-activated kinase (AMPK)/surtuin1/proliferator-activated receptor γ coactivator-1α pathway in T2DM. Subsequently, reduced circulating myokines/hepatokines were in accordance with their levels with hippocampal neuronal markers in T2DM mice. Accordingly, skeletal muscle (muscle strength: 2.83 ± 0.39 vs. 2.187 ± 0.51, p = 0.004) and brain function (PAT: 38.5 ± 57.91 vs. 11.556 ± 12.03, p = 0.02) impairment and morphological changes (muscle cross-sectional area: 872.43 ± 242.87 vs. 743.68 ± 169.31, p = 0.01; density of neurons in hippocampus: 145 ± 15.13 vs. 77 ± 35.51, p = 0.05; density of neurons in cortex: 138.333 ± 6.66 vs. 78 ± 17.35, p = 0.05) were shown in T2DM mice. In addition, the working ability demonstrated by Y-maze was positively correlated with % lean mass (p = 0.046, R = 0.3426). CONCLUSIONS: T2DM led to aberrant energy in skeletal muscle and brain via myokines/hepatokines. This study suggested that myokines and hepatokines might have potential roles in skeletal muscle and central metabolic functions which can mediate cognitive function in T2DM mice.

8.
Nutr Res ; 104: 10-19, 2022 08.
Article in English | MEDLINE | ID: mdl-35533425

ABSTRACT

Quamoclit angulata (QA) is a species of the Convolvulaceae family and has a regulatory effect on glucose homeostasis. However, the effects of QA on hyperglycemia-induced hepatic damage has not been elucidated. We hypothesized that QA extract (QAE) would alleviate hepatic damage through regulation of hepatic lipid accumulation in type 2 diabetes mellitus (T2DM). T2DM was induced by streptozotocin-high-fat diet in C57BL6 male mice for 8 weeks. The diabetic mice were supplemented with QAE at low dose (5 mg/kg) or high dose (HQ, 10 mg/kg) by oral gavage every day for 12 weeks. Histopathological changes in hepatic tissue were examined using hematoxylin and eosin staining, and the protein levels of biomarkers related to AMP-activation kinase (AMPK)/sirtuin-1 (SIRT1)-associated lipid metabolism were measured using Western blotting. QAE supplementation ameliorated plasma insulin and glycated hemoglobin in diabetic mice. Furthermore, QAE decreased hepatic lipid accumulation demonstrated by hepatic triglyceride and cholesterol levels. QAE supplementation induced hepatic AMPK, which activates SIRT1 accompanied by reduced lipogenesis in the HQ group. These changes were partially explained by the amelioration of advanced glycation end product, hepatic oxidative stress, inflammation, and fibrosis in diabetic mice. Altogether, QAE would be a potential nutraceutical to prevent hepatic damage by regulation of AMPK/SIRT1-associated lipid metabolism through oxidative stress, inflammation, and fibrosis in T2DM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Liver , Plant Extracts , AMP-Activated Protein Kinases/metabolism , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Dietary Supplements , Fibrosis , Inflammation/metabolism , Lipid Metabolism , Liver/metabolism , Liver/physiopathology , Male , Mice , Mice, Inbred C57BL , Plant Extracts/pharmacology , Sirtuin 1/metabolism , Streptozocin , Triglycerides/metabolism
9.
Antioxidants (Basel) ; 10(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34679681

ABSTRACT

Annona muricata (AM) is evergreen plant of the Annonaceae family and known to have anticancer and antidiabetic effects. However, anti-diabetic mechanisms of AM extracts (AME) associated with hepatic glucose regulation and lipid metabolism remain unclear. In this study, we investigated the protective effect of AME extracted on hepatic damage in diabetic mice. Diabetes was induced by a high-fat diet with two-times streptozotocin (STZ) injection (60 mg/kg BW) in C57BL/6 male mice. The diabetic mice were daily administered with AME (50 or 100 mg/kg BW) by gavage for 9 weeks. Biomarkers related to energy metabolism and insulin signaling were examined to identify the effect of AME on hyperglycemia induced hepatic damage. AME supplementation reduced levels of FBG, HbA1c, HOMA-IR and hepatic lipid profiles as well as enhanced insulin signaling by increased the protein levels of IRS-1 accompanied GLUT2 in diabetic mice. Especially low dose of AME showed the beneficial effect of reducing oxidative stress (4-HNE, protein carbonyls, Nrf2, NQO1) and improved hepatic morphology demonstrated by lipid droplets along with upregulation of lipophagy (pAMPK, p-mTOR/mTOR, LC3-2/LC3-1) in diabetic mice. Moreover, AME supplementation ameliorated hepatic lipid metabolism (FAS, SREBP1c, C/EBPα, PPARγ, CPT1A, PPARα) and energy metabolism (pAMPK, PGC1α) in diabetic mice. Taken together, this study suggested that AME could be helpful to prevent hepatic abnormality by regulation of insulin signaling associated with energy metabolism and autophagy in diabetes.

10.
Exp Biol Med (Maywood) ; 246(10): 1139-1147, 2021 05.
Article in English | MEDLINE | ID: mdl-33541129

ABSTRACT

Vitamin D3 has been reported to protect liver against non-alcoholic fatty liver disease (NAFLD) by attenuating hepatic lipid dysregulation in type 2 diabetes mellitus (T2DM). However, the mechanism of vitamin D3 on hepatic lipid metabolism-associated autophagy in hyperglycemia-induced NAFLD remains yet to be exactly elucidated. C57BL/6J mice were intraperitoneally injected with 30 mg/kg of streptozotocin and fed a high-fat diet for induction of diabetes. All mice were administered with vehicle or vitamin D3 (300 ng/kg or 600 ng/kg) by oral gavage for 12 weeks. Histological demonstrations of the hepatic tissues were obtained by H&E staining and the protein levels related to lipid metabolism and autophagy signaling were analyzed by Western blot. Treatment with vitamin D3 improved insulin resistance, liver damage, and plasma lipid profiles, and decreased hepatic lipid content in the diabetic mice. Moreover, vitamin D3 administration ameliorated hepatic lipid dysregulation by downregulating lipogenesis and upregulating lipid oxidation under diabetic condition. Importantly, vitamin D3 treatment induced autophagy by activating AMP-activated protein kinase (AMPK), inactivating Akt and ultimately blocking mammalian target of rapamycin (mTOR) activation in the T2DM mice. Additionally, vitamin D3 was found to be effective in anti-apoptosis and anti-fibrosis in the liver of diabetic mice. The results suggested that vitamin D3 may ameliorate hepatic lipid dysregulation by activating autophagy regulatory AMPK/Akt-mTOR signaling in T2DM, providing insights into its beneficial effects on NAFLD in type 2 diabetic patients.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/drug effects , Cholecalciferol/pharmacology , Diabetes Mellitus, Type 2/metabolism , Dietary Supplements , Lipid Metabolism/drug effects , Liver/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Apoptosis/drug effects , Blood Glucose/metabolism , Body Weight/drug effects , Cholecalciferol/blood , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Feeding Behavior/drug effects , Liver/drug effects , Liver/physiopathology , Male , Mice, Inbred C57BL , Organ Size/drug effects , Proto-Oncogene Proteins c-akt/metabolism
11.
Nutr Res ; 80: 55-65, 2020 08.
Article in English | MEDLINE | ID: mdl-32693268

ABSTRACT

Oxidative stress and abnormal lipid metabolism in diabetes can trigger renal lipotoxicity, extending to diabetic nephropathy. Vitamin D3 has been known to be involved in lipid metabolism as well as insulin secretion or inflammation. Therefore, we hypothesized that vitamin D3 supplementation attenuated hyperglycemia-induced renal damage in diabetic mice. Diabetes was induced by a 40% kJ high-fat diet with 30 mg/kg body weight of streptozotocin by intraperitoneal injection twice in male C57BL/6J mice. Among diabetic mice (fasting blood glucose > 140 mg/dL), mice were supplemented with 300 ng/kg body weight of vitamin D3 dissolved in olive oil for 12 weeks. Normal control and diabetic control mice were orally administrated with olive oil as a vehicle. Normal control mice were fed with an AIN-93G diet during the experiment. Vitamin D3 supplementation in diabetic mice improved glucose intolerance and kidney function, demonstrated by diminishing glomerular areas. Vitamin D3 supplementation in diabetic mice significantly reduced triglycerides and low-density lipoprotein cholesterol in plasma as well as triglycerides and total cholesterol in the kidney. Furthermore, vitamin D3 supplementation attenuated lipid synthesis, oxidative stress, and apoptosis, accompanied by activation of ß-oxidation, antioxidant defense enzymes, and autophagy in diabetic mice. In conclusion, vitamin D3 supplementation ameliorates hyperglycemia-induced renal damage through the regulation of lipid metabolisms, oxidative stress, apoptosis, and autophagy in diabetes. Vitamin D3 could be a promising nutrient to weaken diabetic nephropathy.


Subject(s)
Autophagy , Cholecalciferol/administration & dosage , Diabetes Mellitus, Type 2/physiopathology , Dietary Supplements , Kidney/metabolism , Lipid Metabolism , Animals , Apoptosis , Body Weight , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat , Eating , Hydroxycholecalciferols/blood , Inflammation/physiopathology , Kidney Glomerulus/pathology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress
12.
Antioxidants (Basel) ; 9(6)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471242

ABSTRACT

Type 2 diabetes mellitus (T2DM) is caused by abnormalities of controlling blood glucose and insulin homeostasis. Especially, hyperglycemia causes hyper-inflammation through activation of NLRP3 inflammasome, which can lead to cell apoptosis, hypertrophy, and fibrosis. Quamoclit angulata (QA), one of the annual winders, has been shown ameliorative effects on diabetes. The current study investigated whether the QA extract (QAE) attenuated hyperglycemia-induced renal inflammation related to NLRP inflammasome and oxidative stress in high fat diet (HFD)-induced diabetic mice. After T2DM was induced, the mice were treated with QAE (5 or 10 mg/kg/day) by gavage for 12 weeks. The QAE supplementation reduced homeostasis model assessment insulin resistance (HOMA-IR), kidney malfunction, and glomerular hypertrophy in T2DM. Moreover, the QAE treatment significantly attenuated renal NLRP3 inflammasome dependent hyper-inflammation and consequential renal damage caused by oxidative stress, apoptosis, and fibrosis in T2DM. Furthermore, QAE normalized aberrant energy metabolism (downregulation of p-AMPK, sirtuin (SIRT)-1, and PPARγ-coactivator α (PGC-1 α)) in T2DM mice. Taken together, the results suggested that QAE as a natural product has ameliorative effects on renal damage by regulation of oxidative stress and inflammation in T2DM.

13.
Antioxidants (Basel) ; 9(2)2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32050658

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemia. The chronic hyperglycemic condition causes hyperinflammation via activation of nucleotide-binding oligomerization domain-like pyrin domain containing receptor 3 (NLRP3) inflammasome and abnormally leads to morphological and functional changes in kidney. A previous study showed a protective effect of Lespedeza bicolor extract (LBE) on endothelial dysfunction induced by methylglyoxal glucotoxicity. We aimed to investigate whether LBE ameliorated renal damage through regulation of NLRP3 inflammasome-dependent hyper-inflammation in T2DM mice. After T2DM induction by a high fat diet and low dose of streptozotocin (30 mg/kg), the mice were administered with different dosages of LBE (100 or 250 mg/kg/day) by gavage for 12 weeks. LBE supplementation ameliorated kidney dysfunction demonstrated by urine albumin-creatinine at a low dose and plasma creatinine, blood urea nitrogen (BUN), and glomerular hypertrophy at a high dose. Furthermore, a high dose of LBE supplementation significantly attenuated renal hyper-inflammation associated with NLRP3 inflammasome and oxidative stress related to nuclear factor erythroid 2-related factor 2 (Nrf-2) in T2DM mice. Meanwhile, a low dose of LBE supplementation up-regulated energy metabolism demonstrated by phosphorylation of adenosine monophosphate kinase (AMPK) and Sirtuin (SIRT)-1 in T2DM mice. In conclusion, the current study suggested that LBE, in particular, at a high dose could be used as a beneficial therapeutic for hyperglycemia-induced renal damage in T2DM.

14.
Antioxidants (Basel) ; 8(12)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795363

ABSTRACT

Lespedeza bicolor (LB) is one of the ornamental plants used for the treatment of inflammation caused by oxidative damage. However, its beneficial effects on hyperglycemia-induced hepatic damage and the related molecular mechanisms remain unclear. We hypothesized that Lespedeza bicolor extract (LBE) would attenuate hyperglycemia-induced liver injury in type 2 diabetes mellitus (T2DM). Diabetes was induced by a low dosage of streptozotocin (STZ) injection (30 mg/kg) with a high fat diet in male C57BL/6J mice. LBE was administered orally at 100 mg/kg or 250 mg/kg for 12 weeks. LBE supplementation regardless of dosage ameliorated plasma levels of hemoglobin A1c (HbA1c) in diabetic mice. Moreover, both LBE supplementations upregulated AMP-activation kinase (AMPK), which may activate sirtuin1 (SIRT) associated pathway accompanied by decreased lipid synthesis at low dose of LBE supplementation. These changes were in part explained by reduced protein levels of oxidative stress (nuclear factor erythroid 2-related factor 2 (Nrf2) and catalase), inflammation (nuclear factor kappa B (NF-κB), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and nitric oxide synthases (iNOS)), and fibrosis (α-smooth muscle actin (α-SMA) and protein kinase C (PKC)) in diabetic liver. Taken together, LBE might be a potential nutraceutical to ameliorate hepatic damage by regulation of AMPK associated pathway via oxidative stress, inflammation, and fibrosis in T2DM.

15.
Nutr Res Pract ; 13(5): 377-383, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31583056

ABSTRACT

BACKGROUND/OBJECTIVES: Hyperglycemia-induced hepatic damage has been recognized as one of the major cause of complications in diabetes. Hepatic complications are associated with inflammation and oxidative stress in diabetes. In this study, we investigated the hypothesis that gamma-tocopherol (GT) supplementation ameliorates NLRP3 inflammasome associated hepatic inflammation in diabetes. MATERIALS/METHODS: Diabetes was induced by the intraperitoneal injection of alloxan (150 mg/kg. BW) in ICR mice. All mice were fed with a control diet (AIN-76A). After diabetes was induced (fasting glucose level ≥ 250 mg/dL), the mice were treated with tocopherol-stripped corn oil or GT-supplemented (35 mg/kg) corn oil, respectively, by gavage for 2 weeks. RESULTS: GT supplementation reduced fasting blood glucose levels in diabetic mice relative to non-treated diabetic mice. Moreover, GT supplementation ameliorated hyperglycemia-induced hepatic damage by regulation of NOD-like receptor protein 3 (NLRP3)-inflammasome associated inflammation represented by NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain, caspase-1, nuclear factor-κB pathway as well as oxidative stress demonstrated by nuclear factor erythroid 2-related factor 2, NAD(P)H dehydrogenase quinone 1, catalase and glutathione-dependent peroxidase in diabetic mice. CONCLUSION: The findings suggested that GT supplementation ameliorated hepatic damage by attenuating inflammation and oxidative stress in alloxan-induced diabetic mice. Taken together, GT could be a beneficial nutrient that can ameliorate inflammatory responses associated with NLRP3 inflammasome in hyperglycemia-induced hepatic damage.

16.
Curr Pharm Des ; 25(20): 2264-2278, 2019.
Article in English | MEDLINE | ID: mdl-31267858

ABSTRACT

Wound tissue repair is a complex and dynamic process of restoring cellular structures and tissue layers. Improvement in this process is necessary to effectively treat several pathologies characterized by a chronic delayed wound closure, such as in diabetes, and the investigation of new approaches aimed to ameliorate the wound healing process is under continuous evolution. Recently, the usage of vegetable matrices in the form of ozonated oils has been proposed, and several researchers have shown positive effects on wound healing, due to the bactericidal, antiviral, and antifungal properties of these ozonated oils. In the present review, we intend to summarize the actual state of the art of the topical usage of ozonated oil in cutaneous wounds with special emphasis to the importance of the ozonated degree of the oil.


Subject(s)
Ozone , Phytotherapy , Plant Oils/therapeutic use , Wound Healing , Humans , Skin
17.
J Nutr Biochem ; 57: 77-85, 2018 07.
Article in English | MEDLINE | ID: mdl-29679925

ABSTRACT

Chronic hyperglycemia induces impairment of muscle growth and development of diabetes mellitus (DM). Since skeletal muscle is the major site for disposal of ingested glucose, impaired glucose metabolism causes imbalance between protein synthesis and degradation which adversely affects physical mobility. In this study, we investigated the effect of tocotrienol-rich fraction (TRF) supplementation on skeletal muscle damage in diabetic mice. Diabetes was induced by a high-fat diet with streptozotocin (STZ) injection (100 mg/kg) in male C57BL/6J mice. After diabetes was induced (fasting blood glucose levels≥250 mg/dl), normal control (CON) and diabetic control (DMC) groups were administrated with olive oil, while TRF treatment groups were administrated with TRF (dissolved in olive oil) at low dose (100 mg/kg BW, LT) or high dose (300 mg/kg BW, HT) by oral gavage for 12 weeks. TRF supplementation ameliorated muscle atrophy, plasma insulin concentration and homeostatic model assessment estimated insulin resistance in diabetic mice. Moreover, TRF treatment up-regulated IRS-1 and Akt levels accompanied by increased translocation of GLUT4. Furthermore, TRF increased mitochondrial biogenesis by activating SIRT1, SIRT3 and AMPK in diabetic skeletal muscle. These changes were in part mechanistically explained by reduced levels of skeletal muscle proteins related to oxidative stress (4-hydroxynonenal, protein carbonyls, Nrf2 and HO-1), inflammation (NFkB, MCP-1, IL-6 and TNF-α), and apoptosis (Bax, Bcl2 and caspase-3) in diabetic mice. Taken together, these results suggest that TRF might be useful as a beneficial nutraceutical to prevent skeletal muscle atrophy associated with diabetes by regulating insulin signaling via AMPK/SIRT1/PGC1α pathways in type 2 diabetic mice.


Subject(s)
Diabetes Mellitus, Type 2/diet therapy , Hyperglycemia/physiopathology , Insulin/metabolism , Muscle, Skeletal/drug effects , Tocotrienols/pharmacology , Animals , Apoptosis/drug effects , Diabetes Mellitus, Experimental/diet therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Dietary Supplements , Eating/drug effects , Energy Metabolism/drug effects , Hyperglycemia/diet therapy , Insulin/blood , Male , Mice, Inbred C57BL , Muscle, Skeletal/physiopathology , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Sirtuin 1/metabolism , Tocotrienols/chemistry
18.
Biochem Biophys Res Commun ; 478(3): 1021-7, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27431618

ABSTRACT

Among the diabetic complications, diabetic foot ulcer due to delayed wound healing is one of the most significant clinical problems. Early inflammatory stage is important for better prognosis during wound healing. Thus, regulation of inflammatory response during early stage of wound healing is main target for complete cutaneous recovery. This study investigated the role of genistein supplementation in inflammation and oxidative stress, which are related to NLRP3 inflammasome, NFκB and Nrf2 activation, during cutaneous wound healing in alloxan-induced diabetic mice. Mice with diabetes with fasting blood glucose (FBG) levels > 250 mg/dl were fed diets with AIN-93G rodent diet containing 0%, 0.025% (LG) or 0.1% (HG) genistein. After 2 weeks of genistein supplementation, excisional wounds were made by biopsy punches (4 mm). Genistein supplementation improved fasting glucose levels and wound closure rate. Moreover, genistein supplementation restored NLRP3 inflammasome (NLRP3, ASC and caspase-1) at the basal level and ameliorated both inflammation (TNFα, iNOS, COX2 and NFκB) and antioxidant defense system (Nrf2, HO-1, GPx, and catalase) during early stage of wound healing in diabetic mice. Taken together, genistein supplementation would be a potential therapeutic nutrient in prevention and treatment of delayed wound healing by modulation of inflammation and oxidative stress during inflammatory stage.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Genistein/therapeutic use , Inflammation/drug therapy , Inflammation/pathology , Oxidative Stress , Wound Healing , Alloxan , Animals , Biomarkers/metabolism , Blood Glucose/metabolism , Body Weight/drug effects , Diabetes Mellitus, Experimental/blood , Dietary Supplements , Fasting/blood , Feeding Behavior/drug effects , Female , Genistein/pharmacology , Inflammasomes/metabolism , Inflammation/complications , Mice, Inbred ICR , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress/drug effects , Skin/drug effects , Skin/pathology , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...