Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Front Immunol ; 15: 1354676, 2024.
Article in English | MEDLINE | ID: mdl-38638425

ABSTRACT

Circular RNAs (circRNAs) are a class of transcripts that often are generated by back-splicing that covalently connects the 3'end of the exon to the 5'end. CircRNAs are more resistant to nuclease and more stable than their linear counterparts. One of the well-recognized roles of circRNAs is the miRNA sponging effects that potentially lead to the regulation of downstream proteins. Despite that circRNAs have been reported to be involved in a wide range of human diseases, including cancers, cardiovascular, and neurological diseases, they have not been studied in inflammatory lung responses. Here, we analyzed the circRNA profiles detected in extracellular vesicles (EVs) obtained from the broncho-alveolar lavage fluids (BALF) in response to LPS or acid instillation in mice. Next, we validated two specific circRNAs in the BALF-EVs and BALF cells in response to endotoxin by RT-qPCR, using specific primers targeting the circular form of RNAs rather than the linear host RNAs. The expression of these selected circRNAs in the BALF inflammatory cells, alveolar macrophages (AMs), neutrophils, and lung tissue were analyzed. We further predicted the potential miRNAs that interact with these circRNAs. Our study is the first report to show that circRNAs are detectable in BALF EVs obtained from mice. The EV-cargo circRNAs are significantly altered by the noxious stimuli. The circRNAs identified using microarrays may be validated by RT-qPCR using primers specific to the circular but not the linear form. Future studies to investigate circRNA expression and function including miRNA sponging in lung inflammation potentially uncover novel strategies to develop diagnostic/therapeutic targets.


Subject(s)
Bacterial Infections , Extracellular Vesicles , MicroRNAs , Humans , Animals , Mice , RNA, Circular/genetics , RNA, Circular/metabolism , Bronchoalveolar Lavage Fluid , MicroRNAs/genetics , MicroRNAs/metabolism , Bacterial Infections/metabolism , Extracellular Vesicles/metabolism
2.
Cell Death Discov ; 10(1): 144, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491062

ABSTRACT

Particulate matter (PM) is a global environmental hazard, which affects human health through free radical production, cell death induction, and immune responses. PM activates inflammasomes leading to excessive inflammatory responses and induces ferroptosis, a type of cell death. Despite ongoing research on the correlation among PM-induced ferroptosis, immune response, and inflammasomes, the underlying mechanism of this relationship has not been elucidated. In this study, we demonstrated the levels of PM-induced cell death and immune responses in murine macrophages, J774A.1 and RAW264.7, depending on the size and composition of particulate matter. PM2.5, with extraction ions, induced significant levels of cell death and immune responses; it induces lipid peroxidation, iron accumulation, and reactive oxygen species (ROS) production, which characterize ferroptosis. In addition, inflammasome-mediated cell death occurred owing to the excessive activation of inflammatory responses. PM-induced iron accumulation activates ferroptosis and inflammasome formation through ROS production; similar results were observed in vivo. These results suggest that the link between ferroptosis and inflammasome formation induced by PM, especially PM2.5 with extraction ions, is established through the iron-ROS axis. Moreover, this study can effectively facilitate the development of a new therapeutic strategy for PM-induced immune and respiratory diseases.

3.
Antioxidants (Basel) ; 13(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38397749

ABSTRACT

Inflammation is a natural protective process through which the immune system responds to injury, infection, or irritation. However, hyperinflammation or long-term inflammatory responses can cause various inflammatory diseases. Although idebenone was initially developed for the treatment of cognitive impairment and dementia, it is currently used to treat various diseases. However, its anti-inflammatory effects and regulatory functions in inflammatory diseases are yet to be elucidated. Therefore, this study aimed to investigate the anti-inflammatory effects of idebenone in cecal ligation puncture-induced sepsis and lipopolysaccharide-induced systemic inflammation. Murine models of cecal ligation puncture-induced sepsis and lipopolysaccharide-induced systemic inflammation were generated, followed by treatment with various concentrations of idebenone. Additionally, lipopolysaccharide-stimulated macrophages were treated with idebenone to elucidate its anti-inflammatory effects at the cellular level. Idebenone treatment significantly improved survival rate, protected against tissue damage, and decreased the expression of inflammatory enzymes and cytokines in mice models of sepsis and systemic inflammation. Additionally, idebenone treatment suppressed inflammatory responses in macrophages, inhibited the NF-κB signaling pathway, reduced reactive oxygen species and lipid peroxidation, and normalized the activities of antioxidant enzyme. Idebenone possesses potential therapeutic application as a novel anti-inflammatory agent in systemic inflammatory diseases and sepsis.

4.
Life Sci ; 337: 122342, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38092141

ABSTRACT

AIMS: Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease characterized by chronic inflammation and severe fibrosis for which effective treatment options are currently lacking. In this study, we explored the potential of beta-lapachone (ßL) as a drug candidate for PSC therapy. MATERIALS AND METHODS: We employed an animal model fed a diet containing 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to assess the preventive and therapeutic effects of ßL. The beneficial effects of ßL on PSC pathogenic characteristics, including blood biomarkers, inflammation, and fibrosis, were determined by assessing relevant parameters. Differential gene expression between each group was analyzed by RNA sequencing of liver tissues. Mdr2-/- mice were utilized to explore the involvement of Abcb4 in the ßL-induced improvement of PSC pathogenesis. KEY FINDINGS: ßL effectively inhibited key features of PSC pathogenesis, as demonstrated by reduced blood biomarkers and improved pathogenic characteristics. Treatment with ßL significantly mitigated DDC-induced apoptosis, cell proliferation, inflammation, and fibrosis. Analysis of differential gene expression confirmed a new insight that ßL could stimulate the expression of genes related to NAD synthesis and Abcb4. Indeed, ßL-induced NAD exhibited effective functioning, as evidenced by enhanced sirt1/3 and acetyl-lysine levels, leading to improved mitochondrial stability. The role of Abcb4 in response to ßL was confirmed in Mdr2/Abcb4 KO mice, where the beneficial effects of ßL were abolished. SIGNIFICANCE: This study provided a new concept for PSC treatment, suggesting that pharmacological stimulation of the NAD synthetic pathway and Abcb4 via ßL ameliorates PSC pathogenesis.


Subject(s)
Cholangitis, Sclerosing , Mice , Animals , Cholangitis, Sclerosing/drug therapy , Cholangitis, Sclerosing/metabolism , Cholangitis, Sclerosing/pathology , Rodentia , NAD , Fibrosis , Biomarkers , Inflammation/drug therapy , Disease Models, Animal
5.
Front Immunol ; 14: 1044834, 2023.
Article in English | MEDLINE | ID: mdl-36817491

ABSTRACT

Macrophages (MФ), the primary cell of the innate immune system, serves as the first line of defense. During bacterial infection, Gram-negative (G-) bacteria release nanosized outer membrane vesicles (OMVs), facilitating the crosstalk between the microbe and the host. The underlying mechanisms by which OMVs induced pro-inflammatory (M1) activation are still unknown. Our study shows that OMVs caused M1 activation via modulating various toll-like receptor (TLR) expressions as they contain LPS, LTA, bacterial DNAs, and flagellins. Also, we found that caveolin-1 (cav-1), a 21-kDa scaffolding protein of caveolae and lipid rafts, plays a significant role in OMV-induced pro-inflammatory response in regulating various TLR signaling pathways. Specifically, cav-1 deletion increased the expression of OMV-induced TLRs, pro-inflammatory cytokine secretions (TNF-α and IL-1ß), and the reactive oxygen species (ROS) production in MФs. Further, we examined the interaction between Cav-1 and TLR4 by immunoprecipitation, colocalization, and computational models, providing future direction to explore the role of cav-1 in OMV-induced other TLR signaling. Altogether, Cav-1 is a key regulator in OMV-induced multiple TLRs response. This study promotes future research to develop drugs by targeting the specific motif of cav-1 or TLRs against bacterial infection and macrophage-mediated inflammation.


Subject(s)
Caveolin 1 , Toll-Like Receptors , Humans , Caveolin 1/metabolism , Inflammation , Macrophages , Signal Transduction , Toll-Like Receptors/metabolism , Cell Membrane
6.
BMB Rep ; 56(2): 96-101, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36476270

ABSTRACT

Particulate matter is an air pollutant composed of various components, and has adverse effects on the human body. Particulate matter is known to induce cell death by generating an imbalance in the antioxidant system; however, the underlying mechanism has not been elucidated. In the present study, we demonstrated the cytotoxic effects of the size and composition of particulate matter on small intestine cells. We found that particulate matter 2.5 (PM2.5) with extraction ion (EI) components (PM2.5 EI), is more cytotoxic than PM containing only polycyclic aromatic hydrocarbons (PAHs). Additionally, PM-induced cell death is characteristic of ferroptosis, and includes iron accumulation, lipid peroxidation, and reactive oxygen species (ROS) generation. Furthermore, ferroptosis inhibitor as liproxstatin-1 and iron-chelator as deferiprone attenuated cell mortality, lipid peroxidation, iron accumulation, and ROS production after PM2.5 EI treatment in human small intestinal cells. These results suggest that PM2.5 EI may increase ferroptotic-cell death by iron accumulation and ROS generation, and offer a potential therapeutic clue for inflammatory bowel diseases in human small intestinal cells. [BMB Reports 2023; 56(2): 96-101].


Subject(s)
Antineoplastic Agents , Ferroptosis , Humans , Particulate Matter , Iron , Antioxidants , Reactive Oxygen Species/metabolism
7.
J Hazard Mater ; 445: 130466, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36455323

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases characterized by a severe inflammatory response and the destruction of alveolar epithelium and endothelium. ALI/ARDS is caused by pathogens and toxic environmental stimuli, such as particulate matter (PM). However, the general symptoms of ALI/ARDS are similar, and determining the cause of lung injury is often challenging. In this study, we investigated whether there is a critical miRNA that characterizes PM-induced ALI. We found that the expression of miR-6238 is specifically upregulated in lung tissue and lung-derived extracellular vesicles (EVs) in response to PM exposure. Notably, bacterial endotoxin (Lipopolysaccharide; LPS or peptidoglycan; PTG) does not induce the expression of miR-6238 in the lung. Instead, the expression of miR-155 is dramatically increased in LPS-induced ALI. We further demonstrated that human lung epithelial cells and macrophages predominantly produce miR-6238 and miR-155, respectively. Mechanistically, EV-miR-6238 is effectively internalized into alveolar macrophages (AMs) and regulates inflammatory responses in vivo. CXCL3 is a main target of miR-6238 in AMs and modulates neutrophil infiltration into the lung alveoli. Collectively, our findings suggest that miR-6238 is a novel regulator of pulmonary inflammation and a putative biomarker that distinguishes PM-induced ALI from endotoxin (LPS/PTG)-mediated ALI.


Subject(s)
Acute Lung Injury , MicroRNAs , Respiratory Distress Syndrome , Humans , Up-Regulation , Lipopolysaccharides/toxicity , Lung/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Respiratory Distress Syndrome/genetics , Endotoxins/toxicity , Immunomodulation
8.
Adv Clin Chem ; 108: 105-127, 2022.
Article in English | MEDLINE | ID: mdl-35659058

ABSTRACT

Extracellular vesicles (EVs) are membranous nanoparticles secreted by nearly all cell types and play a critical role in cell-to-cell crosstalk. EVs can be categorized based on their size, surface markers, or the cell type from which they originate. EVs carry "cargo," including but not limited to, RNA, DNA, proteins, and small signaling molecules. To date, many methods have been developed to isolate EVs from biological fluids, such as blood plasma, urine, bronchoalveolar lavage fluid, and urine. Once isolated, EVs can be characterized by dynamic light scattering, nanotracking analysis, nanoscale flow cytometry, and transmission electron microscopy. Given the ability of EVs to transport cargo between cells, research has recently focused on understanding their role in various human diseases. As understanding of their significance to disease processes grows, insight into the mechanisms behind the physiological role of their cargo in target cells can facilitate the development of a new type of biomarker and therapeutic target for diseases in future. In addition, their ability to deliver their cargo selectively to target cells within the human body means that they could serve as therapeutic agents or methods of drug delivery. In this review, we will first introduce EVs and the cargo they carry, outline current methods for EV isolation and characterization, and discuss their potential use as biomarkers and therapeutic agents in the near future.


Subject(s)
Body Fluids , Extracellular Vesicles , Biomarkers/metabolism , Body Fluids/metabolism , Drug Delivery Systems , Extracellular Vesicles/metabolism , Humans
9.
Methods Mol Biol ; 2504: 137-145, 2022.
Article in English | MEDLINE | ID: mdl-35467284

ABSTRACT

Extracellular vesicles (EVs) are biological carriers, and EV-associated miRNAs (EV-miRNAs) are considered as a novel biomarker in multiple diseases. Currently, the column-based purification method is used to purify miRNAs from EVs. However, this method of purification is complex, time-consuming, and expensive. Therefore, a simple and cost-effective single-step quantitative reverse transcription-polymerase chain reaction (RT-qPCR) method is required to detect the expression of EV-miRNAs. This chapter describes a protocol for directly analyzing the EV-miRNAs expression from mouse bronchoalveolar lavage fluid (BALF) and serum without going for an RNA isolation and purification step from EVs. It is an efficient method in several terms such as cost-wise, time, low expertise, and accuracy in results. This method may be helpful in diagnostic blood tests used in medical centers or research laboratories.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Biological Assay , Biomarkers/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Mice , MicroRNAs/metabolism , Real-Time Polymerase Chain Reaction
10.
Toxicol Sci ; 187(1): 162-174, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35201360

ABSTRACT

Ozone is a ubiquitous air pollutant that causes lung damage and altered functioning. Evidence suggests that proinflammatory macrophages contribute to ozone toxicity. Herein, we analyzed the role of extracellular vesicles (EVs) and microRNA (miRNA) cargo in ozone-induced macrophage activation. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in increases in bronchoalveolar lavage fluid EVs, which were comprised predominantly of microvesicles (MVs). NanoFACS analysis revealed that MVs generated following both air and ozone exposure was largely from CD45+ myeloid cells; these MVs were readily taken up by macrophages. Functionally, MVs from ozone, but not air treated mice, upregulated mRNA expression of inflammatory proteins in macrophages including inducible nitric oxide synthase (iNOS), CXCL-1, CXCL-2, and interleukin (IL)-1ß. The miRNA profile of MVs in bronchoalveolar lavage fluid (BALF) was altered after ozone exposure; thus, increases in miR-21, miR-145, miR320a, miR-155, let-7b, miR744, miR181, miR-17, miR-92a, and miR-199a-3p were observed, whereas miR-24-3p and miR-20 were reduced. Ingenuity pathway analysis revealed that these miRNAs regulate pathways that promote inflammatory macrophage activation, and predicted that let-7a-5p/let-7b, miR-24-3p, miR-21-5p, miR-17, and miR-181a-5p are key upstream regulators of inflammatory proteins. After ozone exposure, miR-199a-3p, but not precursor miR-199a-3p, was increased in lung macrophages, indicating that it is derived from MV-mediated delivery. Furthermore, lung macrophage mRNA expression of IL-1ß was upregulated after administration of MVs containing miR-199a-3p mimic but downregulated by miR-199a-3p inhibitor. Collectively, these data suggest that MVs generated following ozone exposure contribute to proinflammatory macrophage activation via MV-derived miRNAs including miR-199a-3p. These findings identify a novel pathway regulating macrophage inflammatory responses to inhaled ozone.


Subject(s)
MicroRNAs , Ozone , Animals , Lung/metabolism , Macrophage Activation , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Ozone/toxicity , RNA, Messenger/metabolism
11.
ACS Nano ; 15(9): 14049-14060, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34339604

ABSTRACT

Evaporation-induced particle aggregation in drying droplets is of significant importance in the prevention of pathogen transfer due to the possibility of indirect fomite transmission of the infectious virus particles. In this study, particle aggregation was directionally controlled using contact line dynamics (pinned or slipping) and geometrical gradients on microstructured surfaces by the systematic investigation of the evaporation process on sessile droplets and sprayed microdroplets laden with virus-simulant nanoparticles. Using this mechanism, we designed robust particle capture surfaces by significantly inhibiting the contact transfer of particles from fomite surfaces. For the proof-of-concept, interconnected hexagonal and inverted pyramidal microwall were fabricated using ultraviolet-based nanoimprint lithography, which is considered to be a promising scalable manufacturing process. We demonstrated the potentials of an engineered microcavity surface to limit the contact transfer of particle aggregates deposited with the evaporation of microdroplets by 93% for hexagonal microwall and by 96% for inverted pyramidal microwall. The particle capture potential of the interconnected microstructures was also investigated using biological particles, including adenoviruses and lung-derived extracellular vesicles. The findings indicate that the proposed microstructured surfaces can reduce the indirect fomite transmission of highly infectious agents, including norovirus, rotavirus, or SARS-CoV-2, via respiratory droplets.


Subject(s)
COVID-19 , Fomites , Humans , SARS-CoV-2
12.
Front Mol Biosci ; 8: 630718, 2021.
Article in English | MEDLINE | ID: mdl-33718435

ABSTRACT

Extracellular vesicles are cell-derived membranous vesicles that are secreted into biofluids. Emerging evidence suggests that EVs play an essential role in the pathogenesis of many diseases by transferring proteins, genetic material, and small signaling molecules between cells. Among these molecules, microRNAs (miRNAs), a type of small noncoding RNA, are one of the most important signals and are involved in various biological processes. Lung cancer is one of the leading causes of cancer-related deaths worldwide. Early diagnosis of lung cancer may help to reduce mortality and increase the 5 years survival rate and thereby reduce the associated socioeconomic burden. In the past, EV-miRNAs have been recognized as biomarkers of several cancers to assist in diagnosis or prognosis. In this review, we discuss recent findings and clinical practice for EV-miRNAs of lung cancer in several biofluids, including blood, bronchoalveolar lavage fluid (BALF), and pleural lavage.

13.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L522-L529, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33438468

ABSTRACT

Extracellular vesicles (EVs) in bodily fluids play an essential role in cell-cell cross talk and potentially serve as novel biomarkers in "liquid biopsy." It is crucial to have a consistent, efficient, and reliable method to separate EVs from bodily fluids. Currently, there is no universally accepted, "best" method to separate EVs. Besides differential ultracentrifugation (UC), polyethylene glycol (PEG) is among the commonly used methods for EV separation from bodily fluids. However, the optimal concentration of PEG to be used remains inadequately addressed. We initially observed that the concentration of PEG has a significant impact on the amount of separated EVs and EV-cargos, which are recovered from bronchoalveolar lavage fluid (BALF). To determine the optimal PEG concentration to be used in EV separation from BALF, we first separated the BALF and serum from wild-type C57BL/6 mice. Next, various concentrations of PEG (5%, 10%, and 15% PEG), a commercial kit, and UC were used to obtain EVs from BALF and serum. EVs were characterized, and EV-cargo protein, RNA, and miRNA levels were determined. We found that high concentration of PEG (10% and 15%) altered various EV parameters that are frequently used in EV studies, including EV yield, purity, and morphology. Using miR-15a, miR-142, and miR-223 as examples, we found that 10% and 15% PEG robustly reduced the detected levels of EV-cargo miRNAs compared with those in the EVs separated using UC or 5% PEG. Collectively, low concentration of PEG facilitates the optimal BALF EV separation.


Subject(s)
Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/cytology , Cell Separation/methods , Extracellular Vesicles/metabolism , Polyethylene Glycols/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Mice , Mice, Inbred C57BL , Polyethylene Glycols/chemistry
14.
Cell Death Discov ; 6: 82, 2020.
Article in English | MEDLINE | ID: mdl-32963810

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a devastating syndrome responsible for significant morbidity and mortality. Diffuse alveolar epithelial cell death, including but not limited to apoptosis and necroptosis, is one of the hallmarks of ARDS. Currently, no detectable markers can reflect this feature of ARDS. Hyperoxia-induced lung injury is a well-established murine model that mimics human ARDS. We found that hyperoxia and its derivative, reactive oxygen species (ROS), upregulate miR-185-5p, but not miR-185-3p, in alveolar cells. This observation is particularly more significant in alveolar type II (ATII) than alveolar type I (ATI) cells. Functionally, miR-185-5p promotes expression and activation of both receptor-interacting kinase I (RIPK1) and receptor-interacting kinase III (RIPK3), leading to phosphorylation of mixed lineage kinase domain-like (MLKL) and necroptosis. MiR-185-5p regulates this process probably via suppressing FADD and caspase-8 which are both necroptosis inhibitors. Furthermore, miR-185-5p also promotes intrinsic apoptosis, reflected by enhancing caspase-3/7 and 9 activity. Importantly, extracellular vesicle (EV)-containing miR-185-5p, but not free miR-185-5p, is detectable and significantly elevated after hyperoxia-induced cell death, both in vitro and in vivo. Collectively, hyperoxia-induced miR-185-5p regulates both necroptosis and apoptosis in ATII cells. The extracellular level of EV-cargo miR-185-5p is elevated in the setting of profound epithelial cell death.

15.
Exp Mol Med ; 52(6): 887-895, 2020 06.
Article in English | MEDLINE | ID: mdl-32541816

ABSTRACT

Extracellular vesicles (EVs) present numerous biomedical ways of studying disease and pathology. They function as protective packaging for the delivery of controlled concentrations of miRNAs and effector molecules, including cytokines, chemokines, genetic material, and small signaling molecules. Previous studies of EVs have yielded valuable insights into pathways of intercellular communication that affect a variety of biological processes and disease responses. The roles of EVs, specifically microRNA-containing EVs (EV-miRNAs), in either mitigating or exacerbating pulmonary disease symptoms are numerous and show promise in helping us understand pulmonary disease pathology. Because of their well-documented involvement in pulmonary diseases, EVs show promise both as possible diagnostic biomarkers and as therapeutic agents. This review surveys the physiological functions of EVs in the respiratory system and outlines the pulmonary disease states in which EVs are involved in intercellular crosstalk. This review also discusses the potential clinical applications of EV-miRNAs in pulmonary diseases.


Subject(s)
Extracellular Vesicles/metabolism , Respiratory System/metabolism , Animals , Cell Communication/physiology , Humans , MicroRNAs/metabolism
16.
Cells ; 9(4)2020 04 22.
Article in English | MEDLINE | ID: mdl-32331346

ABSTRACT

Extracellular vesicles (EV) are secretory membranous elements used by cells to transport proteins, lipids, mRNAs, and microRNAs (miRNAs). While their existence has been known for many years, only recently has research begun to identify their function in intercellular communication and gene regulation. Importantly, cells have the ability to selectively sort miRNA into EVs for secretion to nearby or distant targets. These mechanisms broadly include RNA-binding proteins such as hnRNPA2B1 and Argonaute-2, but also membranous proteins involved in EV biogenesis such as Caveolin-1 and Neural Sphingomyelinase 2. Moreover, certain disease states have also identified dysregulated EV-miRNA content, shedding light on the potential role of selective sorting in pathogenesis. These pathologies include chronic lung disease, immune response, neuroinflammation, diabetes mellitus, cancer, and heart disease. In this review, we will overview the mechanisms whereby cells selectively sort miRNA into EVs and also outline disease states where EV-miRNAs become dysregulated.


Subject(s)
Disease/genetics , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Animals , Humans , Membrane Proteins/metabolism , MicroRNAs/genetics , Models, Biological , RNA-Binding Proteins/metabolism
17.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L742-L749, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32073880

ABSTRACT

Emerging evidence suggests that extracellular vesicle (EV)-associated microRNAs (miRNAs) are a potential diagnostic tool for liquid biopsy in various human diseases. However, the experimental procedure for the detection of EV-associated miRNAs (EV-miRNAs) from body fluids is relatively complex and not cost-effective. Due to the limited amount of EVs and EV-RNAs, a column-based RNA purification, which is an expensive approach, is often used to detect EV-miRNAs via reverse transcription-quantitative real-time PCR (RT-qPCR). Here, we developed and validated a simple and cost-effective method (single-step RT-qPCR) in which we directly detect EV-miRNAs without RNA purification from the EVs. We validated this protocol using the EVs isolated from mouse broncho-alveolar lavage fluid (BALF) and serum. The obtained EVs were first lysed in the EV-lysis buffer, followed by RT-qPCR without isolation and purification of RNAs. We successfully detected the designated miRNAs from lysed EVs; 106 to 107 EVs were optimal to detect the EV-miRNAs using the single-step RT-qPCR. In our previously published work, using the conventional RT-qPCR method, we have reported that miR-142 and -223 are dramatically upregulated in both BALF and serum EVs after lung infection. Hence, we reassessed and confirmed the level of EV-miR-142/223 using the newly developed single-step RT-qPCR. Notably, inhibition of RNase activity in the lysed EVs remains crucial for the detection of EV-miRNAs. Moreover, repeated freeze-thaw cycling significantly interferes the EV-miRNA quantification. Collectively, the single-step RT-qPCR for the detection of EV-miRNAs in vivo will potentially provide a fast, accurate, and convenient way to quantify circulating and/or body fluid-derived EV-miRNAs. This method may potentially be applied to the diagnostic blood testing used in the medical centers or research laboratories.


Subject(s)
Extracellular Vesicles/metabolism , MicroRNAs/genetics , Real-Time Polymerase Chain Reaction/methods , Animals , Cost-Benefit Analysis/methods , Mice , Mice, Inbred C57BL
18.
Methods Mol Biol ; 2115: 107-117, 2020.
Article in English | MEDLINE | ID: mdl-32006397

ABSTRACT

Extracellular vesicles (EVs) are naturally generated nanovesicles which potentially mediate the intercellular communication and interorgan crosstalk. EVs have recently gained significant interest as a promising material for delivery of therapeutics. Small RNAs, including small interfering RNA (siRNA) and microRNA (miRNA), provide a great therapeutic strategy for treating human diseases. However, it remains a challenge to deliver unconjugated small RNAs to the target tissue or cells. The delivery of small RNAs in an EV-encapsulating manner has a number of advantages, such as enhancing the concentration of small RNAs, improving the uptake of small RNAs by the recipient cells, and potentially achieving a cell-specific delivery. In this chapter, a protocol is provided for EV preparation and loading with small RNAs. Additionally, a detailed experimental protocol for tracking and validating small RNA delivery into the lungs is described. Overall, the described protocols are valuable for delivering functional small RNAs both in vitro and in vivo.


Subject(s)
Drug Carriers/chemistry , Extracellular Vesicles/chemistry , Lung/metabolism , RNA, Small Untranslated/administration & dosage , RNA, Small Untranslated/pharmacokinetics , Animals , Electroporation , Gene Transfer Techniques , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
19.
Respir Res ; 20(1): 240, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31666080

ABSTRACT

Extracellular vesicles (EVs) are cell-derived membranous vesicles secreted by cells into the extracellular space, which play a role in cell to cell communication. EVs are categorized into 3 groups depending on their size, surface marker, and method of release from the host cell. Recently, EVs have become of interest in the study of multiple disease etiologies and are believed to be potential biomarkers for many diseases. Multiple different methods have been developed to isolate EVs from different samples such as cell culture medium, serum, blood, and urine. Once isolated, EVs can be characterized by technology such as nanotracking analysis, dynamic light scattering, and nanoscale flow cytometry. In this review, we summarize the current methods of EV isolation, provide details into the three methods of EV characterization, and provide insight into which isolation approaches are most suitable for EV isolation from bronchoalveolar lavage fluid (BALF).


Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Chromatography, Gel/methods , Extracellular Vesicles/metabolism , Flow Cytometry/methods , Microfluidic Analytical Techniques/methods , Biomarkers/metabolism , Extracellular Vesicles/pathology , Extracellular Vesicles/ultrastructure , Humans , Immunoprecipitation/methods , Ultracentrifugation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...