Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38832465

ABSTRACT

BACKGROUND: As the number of genome-wide association study (GWAS) and quantitative trait locus (QTL) mappings in rice continues to grow, so does the already long list of genomic loci associated with important agronomic traits. Typically, loci implicated by GWAS/QTL analysis contain tens to hundreds to thousands of single-nucleotide polmorphisms (SNPs)/genes, not all of which are causal and many of which are in noncoding regions. Unraveling the biological mechanisms that tie the GWAS regions and QTLs to the trait of interest is challenging, especially since it requires collating functional genomics information about the loci from multiple, disparate data sources. RESULTS: We present RicePilaf, a web app for post-GWAS/QTL analysis, that performs a slew of novel bioinformatics analyses to cross-reference GWAS results and QTL mappings with a host of publicly available rice databases. In particular, it integrates (i) pangenomic information from high-quality genome builds of multiple rice varieties, (ii) coexpression information from genome-scale coexpression networks, (iii) ontology and pathway information, (iv) regulatory information from rice transcription factor databases, (v) epigenomic information from multiple high-throughput epigenetic experiments, and (vi) text-mining information extracted from scientific abstracts linking genes and traits. We demonstrate the utility of RicePilaf by applying it to analyze GWAS peaks of preharvest sprouting and genes underlying yield-under-drought QTLs. CONCLUSIONS: RicePilaf enables rice scientists and breeders to shed functional light on their GWAS regions and QTLs, and it provides them with a means to prioritize SNPs/genes for further experiments. The source code, a Docker image, and a demo version of RicePilaf are publicly available at https://github.com/bioinfodlsu/rice-pilaf.


Subject(s)
Data Mining , Genome-Wide Association Study , Oryza , Quantitative Trait Loci , Oryza/genetics , Software , Epigenomics/methods , Computational Biology/methods , Polymorphism, Single Nucleotide , Genomics/methods , Genome, Plant , Chromosome Mapping , Databases, Genetic
2.
Front Plant Sci ; 15: 1412614, 2024.
Article in English | MEDLINE | ID: mdl-38835858

ABSTRACT

Rice blast is a destructive fungal disease affecting rice plants at various growth stages, significantly threatening global yield stability. Development of resistant rice cultivars stands as a practical means of disease control. Generally, association mapping with a diversity panel powerfully identifies new alleles controlling trait of interest. On the other hand, utilization of a breeding panel has its advantage that can be directly applied in a breeding program. In this study, we conducted a genome-wide association study (GWAS) for blast resistance using 296 commercial rice cultivars with low population structure but large phenotypic diversity. We attempt to answer the genetic basis behind rice blast resistance among early maturing cultivars by subdividing the population based on its Heading date 1 (Hd1) functionality. Subpopulation-specific GWAS using the mixed linear model (MLM) based on blast nursery screening conducted in three years revealed a total of 26 significant signals, including three nucleotide-binding site leucine-rich repeat (NBS-LRR) genes (Os06g0286500, Os06g0286700, and Os06g0287500) located at Piz locus on chromosome 6, and one at the Pi-ta locus (Os12g0281300) on chromosome 12. Haplotype analysis revealed blast resistance associated with Piz locus was exclusively specific to Type 14 hd1 among japonica rice. Our findings provide valuable insights for breeding blast resistant rice and highlight the applicability of our elite cultivar panel to detect superior alleles associated with important agronomic traits.

3.
Nutr Res Pract ; 18(3): 309-324, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38854466

ABSTRACT

BACKGROUND/OBJECTIVES: This study evaluated the beneficial effects of an ethanol extract of Boswellia serrata gum resin (FJH-UBS) in osteoporosis. MATERIALS/METHODS: MC3T3-E1 osteoblastic cells and RAW 264.7 osteoclastic cells were treated with FJH-UBS. The alkaline phosphatase (ALP) activity, mineralization, collagen synthesis, osteocalcin content, and Runt-related transcription factor 2 (RUNX2) and Osterix expression were measured in MC3T3-E1 cells. The actin ring structures, tartrate-resistant acid phosphatase (TRAP) activity, and the nuclear factor of activator T-cells, cytoplasm 1 (NFATc1) expression were evaluated in RAW 264.7 cells. Ovariectomized ICR mice were orally administered FJH-UBS for eight weeks. The bone mineral density (BMD) and the serum levels of osteocalcin, procollagen 1 N-terminal propeptide (P1NP), osteoprotegerin, and TRAP 5b were analyzed. RESULTS: FJH-UBS increased the ALP activity, collagen, osteocalcin, mineralization, and RUNX2 and osterix expression in MC3T3-E1 osteoblastic cells, whereas it decreased the TRAP activity, actin ring structures, and NFATc1 expression in RAW 264.7 osteoclastic cells. In ovariectomy-induced osteoporosis mice, FJH-UBS positively restored all of the changes in the bone metabolism biomarkers (BMD, osteocalcin, P1NP, osteoprotegerin, and TRAP 5b) caused by the ovariectomy. CONCLUSION: FJH-UBS has anti-osteoporotic activity by promoting osteoblast activity and inhibiting osteoclast activity in vitro and in vivo, suggesting that FJH-UBS is a potential functional food ingredient for osteoporosis.

4.
J Breath Res ; 18(2)2024 01 18.
Article in English | MEDLINE | ID: mdl-38176080

ABSTRACT

When attempts to lose body fat mass frequently fail, breath acetone (BA) monitoring may assist fat mass loss during a low-carbohydrate diet as it can provide real-time body fat oxidation levels. This randomized controlled study aimed to evaluate the effectiveness of monitoring BA levels and providing feedback on fat oxidation during a three-week low-carbohydrate diet intervention. Forty-seven participants (mean age = 27.8 ± 4.4 years, 53.3% females, body mass index = 24.1 ± 3.4 kg m-2) were randomly assigned to three groups (1:1:1 ratio): daily BA assessment with a low-carbohydrate diet, body weight assessment (body scale (BS)) with a low-carbohydrate diet, and low-carbohydrate diet only. Primary outcome was the change in fat mass and secondary outcomes were the changes in body weight and body composition. Forty-five participants completed the study (compliance rate: 95.7%). Fat mass was significantly reduced in all three groups (allP< 0.05); however, the greatest reduction in fat mass was observed in the BA group compared to the BS (differences in changes in fat mass, -1.1 kg; 95% confidence interval: -2.3, -0.2;P= 0.040) and control (differences in changes in fat mass, -1.3 kg; 95% confidence interval: -2.1, -0.4;P= 0.013) groups. The BA group showed significantly greater reductions in body weight and visceral fat mass than the BS and control groups (allP< 0.05). In addition, the percent body fat and skeletal muscle mass were significantly reduced in both BA and BS groups (allP< 0.05). However, no significant differences were found in changes in body fat percentage and skeletal muscle mass between the study groups. Monitoring BA levels, which could have motivated participants to adhere more closely to the low-carbohydrate diet, to assess body fat oxidation rates may be an effective intervention for reducing body fat mass (compared to body weight assessment or control conditions). This approach could be beneficial for individuals seeking to manage body fat and prevent obesity.


Subject(s)
Acetone , Weight Loss , Female , Humans , Young Adult , Adult , Male , Breath Tests , Body Composition/physiology , Body Weight , Adipose Tissue
5.
Microb Cell Fact ; 23(1): 6, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172811

ABSTRACT

BACKGROUND: Clostridium sp. AWRP (AWRP) is a novel acetogenic bacterium isolated under high partial pressure of carbon monoxide (CO) and can be one of promising candidates for alcohol production from carbon oxides. Compared to model strains such as C. ljungdahlii and C. autoethanogenum, however, genetic manipulation of AWRP has not been established, preventing studies on its physiological characteristics and metabolic engineering. RESULTS: We were able to demonstrate the genetic domestication of AWRP, including transformation of shuttle plasmids, promoter characterization, and genome editing. From the conjugation experiment with E. coli S17-1, among the four replicons tested (pCB102, pAMß1, pIP404, and pIM13), three replicated in AWRP but pCB102 was the only one that could be transferred by electroporation. DNA methylation in E. coli significantly influenced transformation efficiencies in AWRP: the highest transformation efficiencies (102-103 CFU/µg) were achieved with unmethylated plasmid DNA. Determination of strengths of several clostridial promoters enabled the establishment of a CRISPR/Cas12a genome editing system based on Acidaminococcus sp. BV3L6 cas12a gene; interestingly, the commonly used CRISPR/Cas9 system did not work in AWRP, although it expressed the weakest promoter (C. acetobutylicum Pptb) tested. This system was successfully employed for the single gene deletion (xylB and pyrE) and double deletion of two prophage gene clusters. CONCLUSIONS: The presented genome editing system allowed us to achieve several genome manipulations, including double deletion of two large prophage groups. The genetic toolbox developed in this study will offer a chance for deeper studies on Clostridium sp. AWRP for syngas fermentation and carbon dioxide (CO2) sequestration.


Subject(s)
CRISPR-Cas Systems , Escherichia coli , Escherichia coli/genetics , Gene Editing , Clostridium/genetics , Clostridium/metabolism , Metabolic Engineering
6.
Adv Mater ; 36(15): e2310333, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38181178

ABSTRACT

Mechanical constraints imposed on the Pd-H system can induce significant strain upon hydrogenation-induced expansion, potentially leading to changes in the thermodynamic behavior, such as the phase-transition pressure. However, the investigation of the constraint effect is often tricky due to the lack of simple experimental techniques for measuring hydrogenation-induced expansion. In this study, a capacitive-based measurement system is developed to monitor hydrogenation-induced areal expansion, which allows us to control and evaluate the magnitude of the substrate constraint. By using the measurement technique, the influence of substrate constraint intensity on the thermodynamic behavior of the Pd-H system is investigated. Through experiments with different constraint intensities, it is found that the diffefrence in the constraint intensity minimally affects the phase-transition pressure when the Pd-H system allows the release of constraint stress through plastic deformation. These experiments can improve the understanding of the substrate constraint behaviours of Pd-H systems allowing plastic deformation while demonstrating the potential of capacitive-based measurement systems to study the mechanical-thermodynamic coupling of M-H systems.

7.
Nutr Res Pract ; 17(6): 1043-1055, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053822

ABSTRACT

BACKGROUND/OBJECTIVES: The fruit of Cydonia oblonga Miller (COM) is used traditionally in Mediterranean region medicine to prevent or treat obesity, but its mechanism of action is still unclear. Beyond a demonstrated anti-obesity effect, the fruit was tested for the mechanism of adipogenesis in 3T3-L1 preadipocytes. MATERIALS/METHODS: 3T3-L1 preadipocytes were cultured for 8 days with COM fruit extract (COME) at different concentrations (0-600 µg/mL) with adipocyte differentiation medium. The cell viability was measured using an MTT assay; triglyceride (TG) was stained with Oil Red O. The expression levels of the adipogenesis-related genes and protein expression were analyzed by reverse transcription polymerase chain reaction and Western blotting, respectively. RESULTS: COME inhibited intracellular TG accumulation during adipogenesis. A COME treatment in 3T3-L1 cells induced upregulation of the adenosine monophosphate-activated protein kinase (AMPK)α phosphorylation and downregulation of the adipogenic transcription factors, such as sterol regulatory element-binding protein 1c, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer binding protein α. The COME treatment reduced the mRNA expression of fatty acyl synthetase, adenosine triphosphate-citrate lyase, adipocyte protein 2, and lipoprotein lipase. It increased the mRNA expression of hormone-sensitive lipase and carnitine palmitoyltransferase I in 3T3-L1 cells. CONCLUSIONS: COME inhibits adipogenesis via the AMPK signaling pathways. COME may be used to prevent and treat obesity.

8.
Appl Environ Microbiol ; 89(12): e0147423, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37966269

ABSTRACT

IMPORTANCE: The strategy using structural homology with the help of structure prediction by AlphaFold was very successful in finding potential targets for the frhAGB-encoded hydrogenase of Thermococcus onnurineus NA1. The finding that the hydrogenase can interact with FdhB to reduce the cofactor NAD(P)+ is significant in that the enzyme can function to supply reducing equivalents, just as F420-reducing hydrogenases in methanogens use coenzyme F420 as an electron carrier. Additionally, it was identified that T. onnurineus NA1 could produce formate from H2 and CO2 by the concerted action of frhAGB-encoded hydrogenase and formate dehydrogenase Fdh3.


Subject(s)
Hydrogenase , Thermococcus , Thermococcus/genetics , Hydrogenase/genetics , Formate Dehydrogenases/genetics , Carbon Dioxide , NADP
9.
Front Microbiol ; 14: 1279544, 2023.
Article in English | MEDLINE | ID: mdl-37933250

ABSTRACT

Acetogenic bacteria can utilize C1 compounds, such as carbon monoxide (CO), formate, and methanol, via the Wood-Ljungdahl pathway (WLP) to produce biofuels and biochemicals. Two novel acetogenic bacteria of the family Eubacteriaceae ES2 and ES3 were isolated from Eulsukdo, a delta island in South Korea. We conducted whole genome sequencing of the ES strains and comparative genome analysis on the core clusters of WLP with Acetobacterium woodii DSM1030T and Eubacterium limosum ATCC8486T. The methyl-branch cluster included a formate transporter and duplicates or triplicates copies of the fhs gene, which encodes formyl-tetrahydrofolate synthetase. The formate dehydrogenase cluster did not include the hydrogenase gene, which might be replaced by a functional complex with a separate electron bifurcating hydrogenase (HytABCDE). Additionally, duplicated copies of the acsB gene, encoding acetyl-CoA synthase, are located within or close to the carbonyl-branch cluster. The serum bottle culture showed that ES strains can utilize a diverse range of C1 compounds, including CO, formate, and methanol, as well as CO2. Notably, ES2 exhibited remarkable resistance to high concentrations of C1 substrates, such as 100% CO (200 kPa), 700 mM formate, and 500 mM methanol. Moreover, ES2 demonstrated remarkable growth rates under 50% CO (0.45 h-1) and 200 mM formate (0.34 h-1). These growth rates are comparable to or surpassing those previously reported in other acetogenic bacteria. Our study introduces novel acetogenic ES strains and describes their genetic and physiological characteristics, which can be utilized in C1-based biomanufacturing.

10.
Nutr Res Pract ; 17(5): 917-933, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37780222

ABSTRACT

BACKGROUND/OBJECTIVES: As peanuts germinate, the content of the components beneficial to health, such as resveratrol, increases within the peanut sprout. This study examined whether the ethanol extract of peanut sprout tea (PSTE) inhibits breast cancer growth and metastasis. MATERIALS/METHODS: After orthotopically injecting 4T1 cells into BALB/c mice to induce breast cancer, 0, 30, or 60 mg/kg body weight/day of PSTE was administered orally. Angiogenesis-related protein expression in the tumors and the degree of metastasis were analyzed. 4T1 and RAW 264.7 cells were co-cultured, and reverse transcription polymerase chain reaction was performed to measure the crosstalk between breast cancer cells and macrophages. RESULTS: PSTE reduced tumor growth and lung metastasis. In particular, PSTE decreased matrix metalloproteinase-9, platelet endothelial cell adhesion molecule-1, vascular endothelial growth factor-A, F4/80, CD11c, macrophage mannose receptor, macrophage colony-stimulating factor, and monocyte chemoattractant protein 1 expression in the tumors. Moreover, PSTE prevented 4T1 cell migration, invasion, and macrophage activity in RAW 264.7 cells. PSTE inhibited the crosstalk between 4T1 cells and RAW 264.7 cells and promoted the macrophage M1 subtype while inhibiting the M2 subtype. CONCLUSIONS: These results suggest that PSTE blocks breast cancer growth and metastasis to the lungs. This may be because the PSTE treatment inhibits the crosstalk between mammary cancer cells and macrophages and inhibits the differentiation of macrophages into the M2 subtype.

11.
Food Nutr Res ; 672023.
Article in English | MEDLINE | ID: mdl-37691744

ABSTRACT

Kaempferia parviflora (KP) rhizome, also called black ginger, has been used as a herbal medicine for many centuries. This current study was aimed at exploring whether KP rhizome extract (KPE) had anti-obesity effects and the mechanism involved. Five-week-old C57BL/6N male mice were allocated into five groups for 8-week feeding with control diet (CD), high-fat diet (HFD), HFD + 150 mg/kg body weight (BW)/day KPE (HFD+K150), HFD + 300 mg/kg BW/day KPE (HFD+K300), and HFD + 600 mg/kg BW/day KPE (HFD+K600). KPE decreased BW, body fat mass, adipose tissue weight, adipocyte size, and serum levels of glucose, triglycerides, cholesterol, insulin, and leptin in HFD-induced obese C57BL/6N mice. KPE inhibited adipogenesis by decreasing CCAAT/enhancer binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase 1, ATP-citrate lyase, and fatty acid synthase mRNA expression. KPE improved lipolysis by increasing carnitine palmitoyl transferase 1 and hormone-sensitive lipase mRNA expression. These results suggest that KPE may have inhibited HFD-induced obesity by regulating several pathways involved in decreasing adipogenesis and enhancing lipolysis. Thus, the results suggest that KPE (or KP) may be applicable as an anti-obesity agent.

12.
Nucleic Acids Res ; 51(18): 10026-10040, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37650645

ABSTRACT

Thermococcus onnurineus NA1, a hyperthermophilic carboxydotrophic archaeon, produces H2 through CO oxidation catalyzed by proteins encoded in a carbon monoxide dehydrogenase (CODH) gene cluster. TON_1525 with a DNA-binding helix-turn-helix (HTH) motif is a putative repressor regulating the transcriptional expression of the codh gene cluster. The T55I mutation in TON_1525 led to enhanced H2 production accompanied by the increased expression of genes in the codh cluster. Here, TON_1525 was demonstrated to be a dimer. Monomeric TON_1525 adopts a novel 'eighth note' symbol-like fold (referred to as 'eighth note' fold regulator, EnfR), and the dimerization mode of EnfR is unique in that it has no resemblance to structures in the Protein Data Bank. According to footprinting and gel shift assays, dimeric EnfR binds to a 36-bp pseudo-palindromic inverted repeat in the promoter region of the codh gene cluster, which is supported by an in silico EnfR/DNA complex model and mutational studies revealing the implication of N-terminal loops as well as HTH motifs in DNA recognition. The DNA-binding affinity of the T55I mutant was lowered by ∼15-fold, for which the conformational change of N-terminal loops is responsible. In addition, transcriptome analysis suggested that EnfR could regulate diverse metabolic processes besides H2 production.

13.
Nutr Res Pract ; 17(3): 451-463, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37266120

ABSTRACT

BACKGROUND/OBJECTIVES: The purpose of this study was to establish a database (DB) of foods containing vitamin D that were investigated in the Korea National Health and Nutrition Examination Survey (KNHANES), to estimate the dietary vitamin D intake, to evaluate the dietary adequacy of this intake, and to identify the major food sources of Koreans that contain vitamin D. SUBJECTS/METHODS: This study used data from the KNHANES 2016-2019. Individuals aged ≥ 1 year who participated in the nutrition survey (n = 28,418) were included. The dietary intake was assessed by the 24-h dietary recall method and individual dietary vitamin D intake was estimated using a newly established vitamin D DB. Dietary adequacy was evaluated by comparing the dietary intake of the participants with adequate intake (AI) as defined by Dietary Reference Intakes for Koreans (KDRIs) 2020. RESULTS: The average dietary vitamin D intake for all the subjects was 3.13 µg/d, which was 33.1% of AI. Dietary vitamin D intake was lower in rural residents, the elderly, and those with low income. The major food groups that contributed to the total dietary vitamin D intake were fish and shellfish (61.59%), eggs (17.75%), meat (8.03%), milk (4.25%), legumes (3.93%), and grains (3.84%). The top 10 individual food items that contributed to the total vitamin D intake were eggs (17.44%), squid (8.5%), eels (7.44%), salmon (5.35%), mackerel (5.27%), anchovies (4.65%), yellow croakers (4.58%), pork meat (4.47%), soymilk (4.46%), and skipjack tuna (3.80%). CONCLUSION: These results show that the mean dietary vitamin D intake of Koreans is lower than the reference AI level. Nutritional policies need to be put in place to increase the vitamin D intake of Koreans in the future. In addition, comprehensive research on all the sources of vitamin D, including intake of supplements and biosynthesis in the skin, is required.

14.
Nutr Res Pract ; 17(2): 206-217, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37009135

ABSTRACT

BACKGROUND/OBJECTIVES: The immunomodulatory effect of Platycodon grandiflorum (PG) has been reported, but studies on its mechanism are still lacking. This study was undertaken to confirm whether the hydrolyzed and fermented PG extract (HFPGE) obtained by adding hydrolysis and fermentation to the extraction process has an immune-enhancing effect in the in vivo system. MATERIALS/METHODS: Five-week-old BALB/c mice were divided into 4 groups: normal control group (NOR), control group (CON), 150 mg/kg body weight (BW)/day HFPGE-treated group (T150), and 300 mg/kg BW/day HFPGE-treated group (T300). The mice were administered HFPGE for 4 weeks and intraperitoneally injected with cyclophosphamide (CPA, 80 mg/kg BW/day) on day 6, 7, and 8, respectively, to induce immunosuppression. The levels of immunoglobulins (Igs) and cytokines were measured in the serum. In splenocytes, proliferation and cytokine levels were measured. RESULTS: Serum IgA, IgG, and IgM levels were observed to decrease after CPA treatment, which was recovered by HFPGE administration. The levels of serum interleukin (IL)-12, tumor necrosis factor (TNF)-α, IL-8, and transforming growth factor (TGF)-ß were also decreased after exposure to CPA but increased after HFPGE administration. Decreased splenocyte proliferation was seen in CPA-treated mice, but was observed to increase in the T150 and T300 groups as compared to the NOR group. Compared to the CON group, splenocyte proliferation stimulated with concanavalin A (ConA) or lipopolysaccharide (LPS) in the HFPGE-treated groups was significantly increased. The cytokines secreted by ConA-stimulated splenocytes (IL-2, IL-12, interferon-γ, TNF-α) were increased in the T150 and T300 groups, and cytokines secreted by LPS-stimulated splenocytes (IL-4, IL-8, TGF-ß) were also increased by HFPGE administration. CONCLUSION: These results suggest that HFPGE stimulates the immunity in immunosuppressed conditions, thereby enhancing the immune response. Therefore, it is expected that HFPGE has the potential to be used as functional food and medicine for immune recovery in various immunocompromised situations.

15.
Nutr Res Pract ; 17(2): 257-268, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37009146

ABSTRACT

BACKGROUND/OBJECTIVES: Zinc is an essential trace mineral which is important for the growth and development of the human body and immunological and neurological functions. Inadequate zinc intake may cause zinc deficiency with its adverse consequences. In this study, we aimed to estimate the dietary zinc intake levels and sources among Koreans. SUBJECTS/METHODS: For this secondary analysis, we obtained data from the Korea National Health and Nutrition Examination Survey (KNHANES) 2016-2019. Individuals aged ≥ 1 yr who had completed a 24-h recall were included. The dietary zinc intake of each individual was calculated by applying data from a newly developed zinc content database to the KNHANES raw data. We also compared the extracted data with the sex-, age-specific reference values suggested in the Korean Dietary Reference Intakes 2020. The prevalence of adequate zinc intake was then evaluated by the proportion of the individuals who met the estimated average requirement (EAR). RESULTS: The mean zinc intake of Koreans aged ≥ 1 yr and adults aged ≥ 19 yrs were 10.2 and 10.4 mg/day, equivalent to 147.4% and 140.8% of the EAR, respectively. Approximately 2 in 3 Koreans met the EAR for zinc, but the zinc intake differed slightly among the different age and sex groups. In children aged 1-2 yrs, 2 out of 5 exceeded the upper level of intake, and nearly half of the younger adults (19-29 yrs) and the elders (≥ 75 yrs) did not meet the EAR. The major contributing food groups were grains (38.9%), meats (20.4%), and vegetables (11.1%). The top 5 food contributors to zinc intake were rice, beef, pork, egg, and baechu kimchi, which accounted for half of the dietary intake. CONCLUSION: The mean zinc intake among Koreans was above the recommended level, but 1 in 3 Koreans had inadequate zinc intake and some children were at risk of excessive zinc intake. Our study included zinc intake from diet only, thus to better understand zinc status, further research to include intake from dietary supplements is needed.

16.
Article in English | MEDLINE | ID: mdl-37022754

ABSTRACT

A strictly anaerobic hyperthermophilic archaeon, designated strain IOH2T, was isolated from a deep-sea hydrothermal vent (Onnuri vent field) area on the Central Indian Ocean Ridge. Strain IOH2T showed high 16S rRNA gene sequence similarity to Thermococcus sibiricus MM 739T (99.42 %), Thermococcus alcaliphilus DSM 10322T (99.28 %), Thermococcus aegaeus P5T (99.21 %), Thermococcus litoralis DSM 5473T (99.13 %), 'Thermococcus bergensis' T7324T (99.13 %), Thermococcus aggregans TYT (98.92 %) and Thermococcus prieurii Bio-pl-0405IT2T (98.01 %), with all other strains showing lower than 98 % similarity. The average nucleotide identity and in silico DNA-DNA hybridization values were highest between strain IOH2T and T. sibiricus MM 739T (79.33 and 15.00 %, respectively); these values are much lower than the species delineation cut-offs. Cells of strain IOH2T were coccoid, 1.0-1.2 µm in diameter and had no flagella. Growth ranges were 60-85 °C (optimum at 80 °C), pH 4.5-8.5 (optimum at pH 6.3) and 2.0-6.0 % (optimum at 4.0 %) NaCl. Growth of strain IOH2T was enhanced by starch, glucose, maltodextrin and pyruvate as a carbon source, and elemental sulphur as an electron acceptor. Through genome analysis of strain IOH2T, arginine biosynthesis related genes were predicted, and growth of strain IOH2T without arginine was confirmed. The genome of strain IOH2T was assembled as a circular chromosome of 1 946 249 bp and predicted 2096 genes. The DNA G+C content was 39.44 mol%. Based on the results of physiological and phylogenetic analyses, Thermococcus argininiproducens sp. nov. is proposed with type strain IOH2T (=MCCC 4K00089T=KCTC 25190T).


Subject(s)
Thermococcus , Thermococcus/genetics , Seawater , Base Composition , Phylogeny , RNA, Ribosomal, 16S/genetics , Indian Ocean , DNA, Bacterial/genetics , Fatty Acids/chemistry , Sequence Analysis, DNA , Bacterial Typing Techniques
17.
Nutr Res Pract ; 17(1): 48-61, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36777797

ABSTRACT

BACKGROUND/OBJECTIVES: Magnesium is an essential nutrient for human health. However, inadequate intake is commonly reported worldwide. Along with reduced consumption of vegetables and fruits and increased consumption of refined or processed foods, inadequate magnesium intake is increasingly reported as a serious problem. This study aimed to assess magnesium intake, its dietary sources, and the adequacy of magnesium intake in Korean populations. SUBJECTS/METHODS: Data was obtained from the Korea National Health and Nutrition Examination Survey 2016-2019 and included individuals aged ≥1 yr who had participated in a nutrition survey (n=28,418). Dietary intake was assessed by 24-h recall, and dietary magnesium intake was estimated using a newly established magnesium database. Diet adequacy was evaluated by comparing dietary intake with the estimated average requirement (EAR) suggested in the Korean Dietary Reference Intakes 2020. RESULTS: The mean dietary magnesium intake of Koreans aged ≥1 yr was 300.4 mg/d, which was equivalent to 119.8% of the EAR. The prevalence of individuals whose magnesium intake met the EAR was 56.8%. Inadequate intake was observed more in females, adolescents and young adults aged 12-29 yrs, elders aged ≥65 yrs, and individuals with low income. About four-fifths of the daily magnesium came from plant-based foods, and the major food groups contributing to magnesium intake were grains (28.3%), vegetables (17.6%), and meats (8.4%). The top 5 individual foods that contributed to magnesium intake were rice, Baechu (Korean cabbage) kimchi, tofu, pork, and milk. However, the contribution of plant foods and individual contributing food items differed slightly by sex and age groups. CONCLUSIONS: This study found that the mean dietary magnesium intake among Koreans was above the recommended intake, whereas nearly one in 2 Koreans had inadequate magnesium intake. To better understand the status of magnesium intake, further research is required, which includes the intake of dietary supplements.

18.
Anat Rec (Hoboken) ; 306(4): 905-917, 2023 04.
Article in English | MEDLINE | ID: mdl-36583474

ABSTRACT

A recent report suggested that LIM homeobox 6 (Lhx6) + GABA-releasing neurons of the ventral zona incerta (VZI) promote sleep, particularly paradoxical sleep (PS). While their potential involvement in sleep still needs to be firmly confirmed, little is known about their specific input/output connections with widespread brain regions, including those involved in sleep. Thus, the present study was designed to examine whether Lhx6-expressing neurons (in parallel to intermingled MCH-expressing ones) may send efferent projections to cholinergic and/or monoaminergic nuclei from basal forebrain (BF) to brainstem (BS). Based on the present observations, the proportions of Lhx6+ neuronal projection to the BF and BS cholinergic nuclei over the total number of Lhx6+ VZI cells were approximately 5.9% and 6.9%, respectively. Likewise, the proportions of Lhx6+ neuronal projection to the dorsal raphe and locus coeruleus over the total number of Lhx6+ VZI cells were about 4.3% and 3.9%, respectively. In addition, Lhx6+ cells projecting to the cholinergic or monoaminergic nuclei were scattered along the entire dorsal-to-ventral extent of the VZI. Based on the present as well as our previous observations, it is suggested that Lhx6+ VZI neurons might play an important role in the regulation of PS, partly via the neural network involving the cholinergic as well as monoaminergic nuclei of the rat.


Subject(s)
Zona Incerta , Rats , Animals , Genes, Homeobox , Brain Stem/physiology , GABAergic Neurons , Cholinergic Agents
19.
Nutr Res Pract ; 16(6): 685-699, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36467769

ABSTRACT

BACKGROUND/OBJECTIVES: Platycodon grandiflorum (PG) has long been known as a medicinal herb effective in various diseases, including bronchitis and asthma, but is still more widely used for food. Fermentation methods are being applied to increase the pharmacological composition of PG extracts and commercialize them with high added value. This study examines the hydrolyzed and fermented PG extract (HFPGE) fermented with Lactobacillus casei in RAW 264.7 cells, and investigates the effect of amplifying the immune and the probable molecular mechanism. MATERIALS/METHODS: HFPGE's total phenolic, flavonoid, saponin, and platycodin D contents were analyzed by colorimetric analysis or high-performance liquid chromatography. Cell viability was measured by the MTT assay. Phagocytic activity was analyzed by a phagocytosis assay kit, nitric oxide (NO) production by a Griess reagent system, and cytokines by enzyme-linked immunosorbent assay kits. The mRNA expressions of inducible nitric oxide synthase (iNOS) and cytokines were analyzed by reverse transcription-polymerase chain reaction, whereas MAPK and nuclear factor (NF)-κB activation were analyzed by Western blots. RESULTS: Compared to PGE, HFPGE was determined to contain 13.76 times and 6.69 times higher contents of crude saponin and platycodin D, respectively. HFPGE promoted cell proliferation and phagocytosis in RAW 264.7 cells and regulated the NO production and iNOS expression. Treatment with HFPGE also resulted in increased production of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, C-X-C motif chemokine ligand10, granulocyte-colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1, and the mRNA expressions of these cytokines. HFPGE also resulted in significantly increasing the phosphorylation of NF-κB p65, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. CONCLUSIONS: Taken together, our results imply that fermentation and hydrolysis result in the extraction of more active ingredients of PG. Furthermore, we determined that HFPGE exerts immunostimulatory activity via the MAPK and NF-κB signaling pathways.

20.
Front Microbiol ; 13: 982442, 2022.
Article in English | MEDLINE | ID: mdl-36569090

ABSTRACT

In this study, we report the phenotypic changes that occurred in the acetogenic bacterium Clostridium sp. AWRP as a result of an adaptive laboratory evolution (ALE) under the acetate challenge. Acetate-adapted strain 46 T-a displayed acetate tolerance to acetate up to 10 g L-1 and increased ethanol production in small-scale cultures. The adapted strain showed a higher cell density than AWRP even without exogenous acetate supplementation. 46 T-a was shown to have reduced gas consumption rate and metabolite production. It was intriguing to note that 46 T-a, unlike AWRP, continued to consume H2 at low CO2 levels. Genome sequencing revealed that the adapted strain harbored three point mutations in the genes encoding an electron-bifurcating hydrogenase (Hyt) crucial for autotrophic growth in CO2 + H2, in addition to one in the dnaK gene. Transcriptome analysis revealed that most genes involved in the CO2-fixation Wood-Ljungdahl pathway and auxiliary pathways for energy conservation (e.g., Rnf complex, Nfn, etc.) were significantly down-regulated in 46 T-a. Several metabolic pathways involved in dissimilation of nucleosides and carbohydrates were significantly up-regulated in 46 T-a, indicating that 46 T-a evolved to utilize organic substrates rather than CO2 + H2. Further investigation into degeneration in carbon fixation of the acetate-adapted strain will provide practical implications for CO2 + H2 fermentation using acetogenic bacteria for long-term continuous fermentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...