Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Occup Environ Med ; 35: e28, 2023.
Article in English | MEDLINE | ID: mdl-37701489

ABSTRACT

Background: Owing to the coronavirus disease 2019 pandemic, being exposed to work from home and work during nonwork time simultaneously can lead to sleep disturbance; however, their combined effect is unclear. We aimed to investigate the combined effect of work from home and work during nonwork time on sleep disturbance. Methods: This study used data from the Sixth Korean Working Condition Survey and included 27,473 paid workers. Logistic regression analysis was conducted to investigate the relationship between work from home, work during nonwork time, and sleep disturbance according to sex. We re-classified participants into 4 groups based on their working from home (No/Yes) and working during nonwork time (No/Yes). The relative excess risk due to interaction was calculated to examine the effect of exposure to both telecommuting and non-regular work hours on sleep disturbance. Results: Workers exposed to work from home and work during nonwork time had significantly higher risks of sleep disturbance for all, men, and women workers (OR [95% CI]: 1.71 [1.46-2.02], 1.79 [1.43-2.23], and 1.64 [1.29-2.08] for work from home and 3.04 [2.70-3.42], 3.61 [3.09-4.22], and 2.41 [2.01-2.90] for work during nonwork time, respectively). Compared to those who were not exposed to both factors, when workers had both job factors, the ORs (95% CI) of sleep disturbance for all, men, and women were 3.93 (2.80-5.53), 5.08 (3.21-8.03), and 2.91 (1.74-4.87), respectively. The relative excess risk due to interaction of work from home and work during nonwork time was not significant for sleep disturbance. Conclusions: Work from home and work during nonwork time were each associated with sleep disturbance, but the interaction between the two factors on sleep disturbance was not observed in both men and women.

2.
Sci Rep ; 13(1): 3715, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36878916

ABSTRACT

The CRISPR/Cas9 system easily edits target genes in various organisms and is used to treat human diseases. In most therapeutic CRISPR studies, ubiquitously expressed promoters, such as CMV, CAG, and EF1α, are used; however, gene editing is sometimes necessary only in specific cell types relevant to the disease. Therefore, we aimed to develop a retinal pigment epithelium (RPE)-specific CRISPR/Cas9 system. We developed a CRISPR/Cas9 system that operates only in retinal pigment epithelium (RPE) by expressing Cas9 under the RPE-specific vitelliform macular dystrophy 2 promoter (pVMD2). This RPE-specific CRISPR/pVMD2-Cas9 system was tested in human retinal organoid and mouse model. We confirmed that this system works specifically in the RPE of human retinal organoids and mouse retina. In addition, the RPE-specific Vegfa ablation using the novel CRISPR-pVMD2-Cas9 system caused regression of choroidal neovascularization (CNV) without unwanted knock-out in the neural retina in laser-induced CNV mice, which is a widely used animal model of neovascular age-related macular degeneration. RPE-specific Vegfa knock-out (KO) and ubiquitous Vegfa KO were comparable in the efficient regression of CNV. The promoter substituted, cell type-specific CRISPR/Cas9 systems can be used in specific 'target cell' therapy, which edits genes while reducing unwanted off- 'target cell' effects.


Subject(s)
Choroidal Neovascularization , Craniocerebral Trauma , Humans , Animals , Mice , Retinal Pigment Epithelium , CRISPR-Cas Systems , Choroidal Neovascularization/genetics , Choroidal Neovascularization/therapy , Retina , Disease Models, Animal , Vascular Endothelial Growth Factor A/genetics
3.
J Microbiol Biotechnol ; 29(2): 191-199, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30602270

ABSTRACT

We inoculated different combinations of three starter candidates of Bacillus licheniformis, Staphylococcus succinus, and Tetragenococcus halophilus, into sterilized soybeans to predict their contributions to volatile compounds production through soybean fermentation. Simultaneously, we added NaCl to soybean cultures to evaluate its effect on the volatile compounds profile. Cells in soybean cultures (1.5% NaCl) reached almost their maximum growth in a day of incubation, while cell growth was delayed by increasing NaCl concentration in soybean cultures. The dominance of B. licheniformis and S. succinus in the mixed culture of three starter candidates switched to T. halophilus as the NaCl concentration increased from 1.5% to 14% (w/w). Seventeen volatile compounds were detected from the control and starter candidate-inoculated soybean cultures with and without the addition of NaCl. Principal component analysis of these volatile compounds concluded that B. licheniformis and S. succinus made major contributions to producing a specific volatile compound profile from soybean cultures where both species exhibited good growth. 3-Hydroxybutan-2-one, butane-2,3-diol, and 2,3,5,6-tetramethylpyrazine are specific odor notes for B. licheniformis, and 3-methylbutyl acetate and 2-phenylethanol are specific for S. succinus. Octan-3-one and 3-methylbutan-1-ol were shown to be decisive volatile compounds for determining the involvement of S. succinus in the soybean culture containing 7% NaCl. 3-Methylbutyl acetate and 3-methylbutan-1-ol were also produced by T. halophilus during soybean fermentation at an appropriate level of NaCl. Although S. succinus and T. halophilus exhibited growth on the soybean cultures containing 14% NaCl, species-specific volatile compounds determining the directionality of the volatile compounds profile were not produced.


Subject(s)
Bacteria/metabolism , Food Microbiology , Glycine max/metabolism , Soy Foods/microbiology , Volatile Organic Compounds/metabolism , Bacteria/classification , Bacteria/drug effects , Bacteria/growth & development , Fermentation , Hydrogen-Ion Concentration , Microbiota/drug effects , Principal Component Analysis , Sodium Chloride/chemistry , Sodium Chloride/pharmacology , Species Specificity , Volatile Organic Compounds/analysis
4.
J Microbiol Biotechnol ; 28(12): 1992-1998, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30394048

ABSTRACT

In 2015, Bacillus paralicheniformis was separated from B. licheniformis on the basis of phylogenomic and phylogenetic studies, and urease activity was reported as a phenotypic property able to differentiate between the two species. Subsequently, we have found that the urease activity of B. paralicheniformis is strain-specific, and does not reliably discriminate between species, as strains having the same urease gene cluster were identified in B. licheniformis and B. sonorensis, the closest relatives of B. paralicheniformis. We developed a multilocus sequence typing scheme using eight housekeeping genes, adk, ccpA, glpF, gmk, ilvD, pur, spo0A, and tpi to clearly identify B. paralicheniformis from closely related Bacillus species and to find a molecular marker for the rapid identification of B. paralicheniformis. The scheme differentiated 33 B. paralicheniformis strains from 90 strains formerly identified as B. licheniformis. Among the eight housekeeping genes, spo0A possesses appropriate polymorphic sites for the design of a B. paralichenofomis-specific PCR primer set. The primer set designed in this study perfectly separated B. paralicheniformis from B. licheniformis and B. sonorensis.


Subject(s)
Bacillus/classification , Bacillus/enzymology , Bacillus/genetics , Phylogeny , Urease/classification , Urease/genetics , Bacillus/isolation & purification , Bacterial Proteins/genetics , Genes, Bacterial/genetics , Genes, Essential/genetics , Multigene Family , Multilocus Sequence Typing , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Species Specificity , Transcription Factors/genetics
5.
Int J Food Microbiol ; 262: 8-13, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-28950164

ABSTRACT

We inoculated five starter candidates, Enterococcus faecium, Tetragenococcus halophilus, Bacillus licheniformis, Staphylococcus saprophyticus, and Staphylococcus succinus, into sterilized soybeans to predict their effectiveness for flavor production in fermented soybean foods. All of the starter candidates exhibited sufficient growth and acid production on soybean cultures. Twenty-two volatile compounds, such as acids, alcohols, carbonyls, esters, furans, and pyrazines, were detected from the control and starter candidate-inoculated soybean cultures. Principal component analysis of these volatile compounds concluded that E. faecium and T. halophilus produced a similar profile of volatile compounds to soybeans with no dramatic differences in soybean flavor. B. licheniformis and S. succinus produced the crucial volatile compounds that distinguish the flavor profiles of soybean. During soybean fermentation, phenylmethanol and 2,3,5,6-tetramethylpyrazine were determined as odor notes specific to B. licheniformis and 3-methylbutyl acetate as an odor note specific to S. succinus.


Subject(s)
Bacteria/metabolism , Fermented Foods/microbiology , Glycine max/metabolism , Glycine max/microbiology , Soy Foods/microbiology , Volatile Organic Compounds/metabolism , Acids/analysis , Bacteria/classification , Benzyl Alcohols/analysis , Fermentation , Principal Component Analysis , Pyrazines/analysis , Taste , Volatile Organic Compounds/analysis
6.
J Microbiol Biotechnol ; 27(5): 916-924, 2017 May 28.
Article in English | MEDLINE | ID: mdl-28237994

ABSTRACT

Eighty-five Enterococcus faecalis isolates collected from animals (40 isolates), meju (a Korean fermented soybean product; 27 isolates), humans (10 isolates), and various environmental samples (8 isolates) were subjected to multilocus sequence typing (MLST) to identify genetic differences between samples of different origins. MLST analysis resulted in 44 sequence types (STs), and the eBURST algorithm clustered the STs into 21 clonal complexes (CCs) and 17 singletons. The predominant STs, ST695 (21.1%, 18/85) and ST694 (9.4%, 8/85), were singletons, and only contained isolates originating from meju. None of the STs in the current study belonged to CC2 or CC9, which comprise clinical isolates with high levels of antibiotic resistance. The E. faecalis isolates showed the highest rates of resistance to tetracycline (32.9%), followed by erythromycin (9.4%) and vancomycin (2.4%). All isolates from meju were sensitive to these three antibiotics. Hence, MLST uncovered genetic diversity within E. faecalis, and clustering of the STs using eBURST revealed a correlation between the genotypes and origins of the isolates.


Subject(s)
Drug Resistance, Bacterial/genetics , Enterococcus faecalis/classification , Enterococcus faecalis/genetics , Food Microbiology , Genetic Variation , Glycine max/microbiology , Phylogeny , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Chickens , DNA, Bacterial/genetics , Enterococcus faecalis/drug effects , Enterococcus faecalis/isolation & purification , Environmental Microbiology , Erythromycin/pharmacology , Fermentation , Genes, Bacterial , Genotype , Humans , Microbial Sensitivity Tests/veterinary , Multilocus Sequence Typing/methods , Multilocus Sequence Typing/veterinary , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Republic of Korea , Swine , Tetracycline/pharmacology , Vancomycin/pharmacology
7.
Sci Rep ; 6: 35066, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27713526

ABSTRACT

In2O3 nanostructure sensors were fabricated by arc-discharging a source composed of a graphite tube containing indium. The NO gas sensing properties, as well as the morphology, structure, and electrical properties, were examined at room temperature under UV light illumination. In particular, the response and recovery kinetics of the sensor at room temperature under various UV light intensities were studied. The maximum response signal was observed at an intermediate UV light intensity, which could be corroborated by a nano-size effect based on the conduction model of a resistive chemical nano sensor. The mechanism for the enhanced adsorption/desorption kinetics for NO in an air environment under UV light irradiation is discussed in detail. Furthermore, the general requirements of the sensor, including the stability, repeatability, and selectivity, are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...