Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 107(2-3): 569-580, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36517544

ABSTRACT

Astaxanthin is receiving increasing interest as an antioxidant and high value-added secondary metabolite. Haematococcus pluvialis is the main source for astaxanthin production, and many studies are being conducted to increase the production of astaxanthin. In this study, we linked polyethylenimine (PEI) with chitosan to maintain astaxanthin-inducing ability while securing the recyclability of the inducer. Astaxanthin accumulation in H. pluvialis was induced to 86.4 pg cell-1 with the PEI-chitosan fiber (PCF) treatment prepared by cross-linking of 10 µM PEI and low molecular weight (MW) chitosan via epichlorohydrin. PEI concentration affected the astaxanthin accumulation, whereas the MW of chitosan did not. In addition, the PCF treatment in H. pluvialis increased the reactive oxygen species (ROS) content in cells, thereby upregulating the transcription of enzymes involved in astaxanthin biosynthesis. PCF can be reused multiple times with the maintenance of over 90% of the astaxanthin production efficiency. This study offers a reusable PCF stimulation strategy for enhancing natural astaxanthin content, and PCF treatment will easily increase the production scale or reduce production costs by using recyclability that is not available in current methods. KEY POINTS: • Polyethylenimine-chitosan fiber (PCF) was applied to Haematococcus pluvialis • PCF promotes astaxanthin accumulation by enhancing oxidative stress in H. pluvialis • PCF can be reused multiple times with maintaining over 90% production efficiency.


Subject(s)
Chitosan , Polyethyleneimine , Polyethyleneimine/metabolism , Chitosan/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
2.
J Hazard Mater ; 400: 123217, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32947744

ABSTRACT

This study sought to develop a highly efficient adsorbent material for phosphorus (P) removal via valorization of industrial Escherichia coli biomass waste. To ensure an easy and fast recovery after the sorption process, the E. coli biomass waste was immobilized into polysulfone matrix. Additionally, to improve P sorption capacity, the sorbent surface was coated with polyethylenimine (PEI) and further chemically modified. The P uptakes of the developed sorbent (decarboxylated PEI-modified polysulfone-biomass composite fiber, DC-PEI-PEF) were significantly affected by pH. Moreover, the maximum sorption capacity (qmax) of DC-PEI-PEF was estimated as 30.46 ± 1.09 mg/g at neutral pH, as determined by a Langmuir isotherm model. Furthermore, DC-PEI-PEF could reach sorption equilibrium within 5 min and exhibited reusability potential. The partition coefficient of the newly developed material (DC-PEI-PEF) was calculated as 0.387 mg/g⋅µM at 4 mg/L of initial P concentration and decreased as initial P concentrations increased. Therefore, DC-PEI-PEF could be suggested as a promising adsorbent for application in direct phosphorus removal from natural aquatic environments.


Subject(s)
Polyethyleneimine , Water Pollutants, Chemical , Adsorption , Biomass , Escherichia coli , Hydrogen-Ion Concentration , Industrial Waste , Kinetics , Phosphorus , Polymers , Sulfones , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL