Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomedicines ; 12(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38790941

ABSTRACT

Gliomas are the most common primary brain tumors in adults. Despite multidisciplinary treatment approaches, the survival rates for patients with malignant glioma have only improved marginally, and few prognostic biomarkers have been identified. Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) is a crucial regulator of cancer metabolism, playing a vital role in cancer cell adaptation to fluctuating energy demands. In this study, the clinicopathological roles of PGC-1α in gliomas were evaluated. Employing immunohistochemistry, cell culture, siRNA transfection, cell viability assays, western blot analyses, and in vitro and in vivo invasion and migration assays, we explored the functions of PGC-1α in glioma progression. High PGC-1α expression was significantly associated with an advanced pathological stage in patients with glioma and with poorer overall survival. The downregulation of PGC-1α inhibited glioma cell proliferation, invasion, and migration and altered the expression of oncogenic markers. These results conclusively demonstrated that PGC-1α plays a critical role in maintaining the malignant phenotype of glioma cells and indicated that targeting PGC-1α could be an effective strategy to curb glioma progression and improve patient survival outcomes.

2.
Biomedicines ; 12(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38672261

ABSTRACT

Glioblastoma (GBM), the most aggressive form of brain cancer, is characterized by rapid growth and resistance to conventional therapies. Current treatments offer limited effectiveness, leading to poor survival rates and the need for novel therapeutic strategies. Arylquin 1 has emerged as a potential therapeutic candidate because of its unique mechanism of inducing apoptosis in cancer cells without affecting normal cells. This study investigated the efficacy of Arylquin 1 against GBM using the GBM8401 and A172 cells by assessing its dose-dependent cytotoxicity, apoptosis induction, and synergy with radiotherapy. In vitro assays demonstrated a significant reduction in cell viability and increased apoptosis, particularly at high concentrations of Arylquin 1. Migration and invasion analyses revealed notable inhibition of cellular motility. In vivo experiments on NU/NU nude mice with intracranially implanted GBM cells revealed that Arylquin 1 substantially reduced tumor growth, an effect magnified by concurrent radiotherapy. These findings indicate that by promoting apoptosis and enhancing radiosensitivity, Arylquin 1 is a potent therapeutic option for GBM treatment.

3.
Biochem Pharmacol ; 202: 115152, 2022 08.
Article in English | MEDLINE | ID: mdl-35752281

ABSTRACT

There is growing evidence of the importance of protease-activated receptor 4 (PAR4), one of thrombin receptors, as a therapeutic target in thrombotic cardiovascular diseases. In the present study, we utilized ligand-based virtual screening, bioassay, and structure-activity relationship study to discover PAR4 antagonists with new chemical scaffolds from natural origin, and examined their application as antiplatelet agents. By using these approaches, we have identified a flavonoid, 7, 4'-dimethoxy-3-hydroxyflavone, that exhibits anti-PAR4 activity. 7, 4'-Dimethoxy-3-hydroxyflavone inhibited PAR4-mediated human platelet aggregation, GPIIb/IIIa activation, and P-selectin secretion. Also, it inhibited PAR4 downstream signaling pathways, including Ca2+/protein kinase C, Akt, and MAP kinases ERK and p38, in human platelets, and suppressed PAR4-mediated ß-arrestin recruitment in CHO-K1 cells exogenously expressed human PAR4. In a microfluidic system, 7, 4'-dimethoxy-3-hydroxyflavone reduced thrombus formation on collagen-coated chambers at an arterial shear rate in recalcified whole blood. Furthermore, mice treated with 7, 4'-dimethoxy-3-hydroxyflavone were significantly protected from FeCl3-induced carotid arterial occlusions, without significantly affecting tail bleeding time. In conclusion, 7, 4'-dimethoxy-3-hydroxyflavone represents a new class of nature-based PAR4 antagonist, it shows effective in vivo antithrombotic properties with less bleeding tendency, and could be a potential candidate for developing new antiplatelet agents.


Subject(s)
Platelet Aggregation Inhibitors , Thrombosis , Animals , Humans , Mice , Blood Platelets , Fibrinolytic Agents/metabolism , Flavonoids/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Platelet Aggregation , Platelet Aggregation Inhibitors/metabolism , Receptors, Thrombin/metabolism , Thrombin/metabolism , Thrombosis/drug therapy , Thrombosis/metabolism
4.
Toxins (Basel) ; 13(4)2021 04 03.
Article in English | MEDLINE | ID: mdl-33916832

ABSTRACT

Arecoline is one of the nicotinic acid-based alkaloids, which is found in the betel nut. In addition to its function as a muscarinic agonist, arecoline exhibits several adverse effects, such as inducing growth retardation and causing developmental defects in animal embryos, including zebrafish, chicken, and mice. In this study, we aimed to study the potential adverse effects of waterborne arecoline exposure on zebrafish larvae locomotor activity and investigate the possible mechanism of the arecoline effects in zebrafish behavior. The zebrafish behavior analysis, together with molecular docking and the antagonist co-exposure experiment using muscarinic acetylcholine receptor antagonists were conducted. Zebrafish larvae aged 96 h post-fertilization (hpf) were exposed to different concentrations (0.001, 0.01, 0.1, and 1 ppm) of arecoline for 30 min and 24 h, respectively, to find out the effect of arecoline in different time exposures. Locomotor activities were measured and quantified at 120 hpf. The results showed that arecoline caused zebrafish larvae locomotor hyperactivities, even at a very low concentration. For the mechanistic study, we conducted a structure-based molecular docking simulation and antagonist co-exposure experiment to explore the potential interactions between arecoline and eight subtypes, namely, M1a, M2a, M2b, M3a, M3b, M4a, M5a, and M5b, of zebrafish endogenous muscarinic acetylcholine receptors (mAChRs). Arecoline was predicted to show a strong binding affinity to most of the subtypes. We also discovered that the locomotion hyperactivity phenotypes triggered by arecoline could be rescued by co-incubating it with M1 to M4 mAChR antagonists. Taken together, by a pharmacological approach, we demonstrated that arecoline functions as a highly potent hyperactivity-stimulating compound in zebrafish that is mediated by multiple muscarinic acetylcholine receptors.


Subject(s)
Arecoline/toxicity , Behavior, Animal/drug effects , Locomotion/drug effects , Muscarinic Agonists/toxicity , Receptors, Muscarinic/drug effects , Animals , Arecoline/metabolism , Dose-Response Relationship, Drug , Molecular Docking Simulation , Muscarinic Agonists/metabolism , Muscarinic Antagonists/pharmacology , Photoperiod , Protein Binding , Receptors, Muscarinic/metabolism , Signal Transduction , Time Factors , Zebrafish/embryology
5.
Future Med Chem ; 12(13): 1227-1237, 2020 07.
Article in English | MEDLINE | ID: mdl-32432891

ABSTRACT

Background: Modulators of LXRα are of high pharmacological interest as LXRα regulates fatty acid metabolism, inflammatory processes and cancer. We aim to identify new LXRα modulators and to recognize a distinguishable feature of agonists. Results&methodology: The ligand self-dock and largest-cavity-size searching purposely located two appropriate ligand-binding sites to reach the two aims. One is identifying the new modulators from Maybridge library. 20 new compounds are confirmed by the in vitro reporter gene assay. The other is denoting an agonist by at least one best docking pose having one hydrogen bond to LXRα Helix12 His421. Conclusion: Based on the quality x-ray binding pocket, we can identify new LXRα modulators and distinguish between agonists and antagonists by molecular docking.


Subject(s)
Liver X Receptors/agonists , Organic Chemicals/pharmacology , Binding Sites/drug effects , Crystallography, X-Ray , Humans , Ligands , Molecular Docking Simulation , Organic Chemicals/chemistry
6.
Cells ; 8(6)2019 06 10.
Article in English | MEDLINE | ID: mdl-31185584

ABSTRACT

Safety is one of the most important and critical issues in drug development. Many drugs were abandoned in clinical trials and retracted from the market because of unknown side effects. Cardiotoxicity is one of the most common reasons for drug retraction due to its potential side effects, i.e., inducing either tachycardia, bradycardia or arrhythmia. The zebrafish model could be used to screen drug libraries with potential cardiotoxicity in a high-throughput manner. In addition, the fundamental principles of replacement, reduction, and refinement of laboratory animal usage, 3R, could be achieved by using zebrafish as an alternative to animal models. In this study, we used a simple ImageJ-based method to evaluate and screen 70 ion channel ligands and successfully identify six compounds with strong cardiotoxicity in vivo. Next, we conducted an in silico-based molecular docking simulation to elucidate five identified compounds that might interact with domain III or domain IV of the Danio rerio L-type calcium channel (LTCC), a known pharmaceutically important target for arrhythmia. In conclusion, in this study, we provide a web lab and dry lab combinatorial approach to perform in vivo cardiotoxicity drug screening and in silico mechanistic studies.


Subject(s)
Heart Rate , Ion Channels/metabolism , Ligands , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Binding Sites , Calcium Channels, L-Type/chemistry , Calcium Channels, L-Type/metabolism , Embryo, Nonmammalian/metabolism , Heart Rate/drug effects , Hydrogen Bonding , Ion Channels/chemistry , Molecular Docking Simulation , Protein Structure, Tertiary , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Zebrafish/growth & development , Zebrafish Proteins/chemistry
7.
Future Med Chem ; 11(8): 833-846, 2019 04.
Article in English | MEDLINE | ID: mdl-30724109

ABSTRACT

Aim: Blocking receptor tyrosine kinases is a useful strategy for inhibiting the overexpression of EGFR. However, the quality of crystal pocket is an essential issue for virtually identifying new leads for surviving resistance cancer cells. Results: With the examinating crystal pocket quality by the self-docking root-mean-square deviation (RMSD) calculation, we used the two best kinase pockets of mutant EGFR kinases, T790M/L858R and G719S, for virtual screening. After sorting all the docking poses of the 57,177 library compounds by consensus scores, three evidently blocked cellular EGFR phosphorylation in the H1975 and SW48 cell lines. Conclusion: The computationally assessed qualities of crystal pockets of crystal EGFR kinases can help identify new cellular active and target-specific ligands rapidly and at low cost.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Drug Design , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/genetics , Humans , Ligands , Molecular Docking Simulation , Mutation , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
8.
Arterioscler Thromb Vasc Biol ; 39(4): 694-703, 2019 04.
Article in English | MEDLINE | ID: mdl-30727756

ABSTRACT

Objective- PAR4 (protease-activated receptor 4), one of the thrombin receptors in human platelets, has emerged as a promising target for the treatment of arterial thrombotic disease. Previous studies implied that thrombin exosite II, known as a binding site for heparin, may be involved in thrombin-induced PAR4 activation. In the present study, a heparin octasaccharide analog containing the thrombin exosite II-binding domain of heparin was chemically synthesized and investigated for anti-PAR4 effect. Approach and Results- PAR4-mediated platelet aggregation was examined using either thrombin in the presence of a PAR1 antagonist or γ-thrombin, which selectively activates PAR4. SCH-28 specifically inhibits PAR4-mediated platelet aggregation, as well as the signaling events downstream of PAR4 in response to thrombin. Moreover, SCH-28 prevents thrombin-induced ß-arrestin recruitment to PAR4 but not PAR1 in Chinese Hamster Ovary-K1 cells using a commercial enzymatic complementation assay. Compared with heparin, SCH-28 is more potent in inhibiting PAR4-mediated platelet aggregation but has no significant anticoagulant activity. In an in vitro thrombosis model, SCH-28 reduces thrombus formation under whole blood arterial flow conditions. Conclusions- SCH-28, a synthetic small-molecular and nonanticoagulant heparin analog, inhibits thrombin-induced PAR4 activation by interfering with thrombin exosite II, a mechanism of action distinct from other PAR4 inhibitors that target the receptor. The characteristics of SCH-28 provide a new strategy for targeting PAR4 with the potential for the treatment of arterial thrombosis.


Subject(s)
Antithrombins/pharmacology , Heparin/chemistry , Oligosaccharides/pharmacology , Platelet Aggregation/drug effects , Receptors, Thrombin/antagonists & inhibitors , Animals , Antithrombins/chemical synthesis , CHO Cells , Calcium Signaling/drug effects , Computer Simulation , Cricetulus , Drug Evaluation, Preclinical , Humans , In Vitro Techniques , Models, Molecular , Recombinant Proteins/drug effects , Thrombin/pharmacology , Thrombosis/prevention & control
9.
Redox Biol ; 13: 266-277, 2017 10.
Article in English | MEDLINE | ID: mdl-28600983

ABSTRACT

Protein disulfide isomerase (PDI) present at platelet surfaces has been considered to play an important role in the conformational change and activation of the integrin glycoprotein IIb/IIIa (GPIIb/IIIa) and thus enhances platelet aggregation. Growing evidences indicated that platelet surface PDI may serve as a potential target for developing of a new class of antithrombotic agents. In the present study, we investigated the effects of HPW-RX40, a chemical derivative of ß-nitrostyrene, on platelet activation and PDI activity. HPW-RX40 inhibited platelet aggregation, GPIIb/IIIa activation, and P-selectin expression in human platelets. Moreover, HPW-RX40 reduced thrombus formation in human whole blood under flow conditions, and protects mice from FeCl3-induced carotid artery occlusion. HPW-RX40 inhibited the activity of recombinant PDI family proteins (PDI, ERp57, and ERp5) as well as suppressed cell surface PDI activity of platelets in a reversible manner. Exogenous addition of PDI attenuated the inhibitory effect of HPW-RX40 on GPIIb/IIIa activation. Structure-based molecular docking simulations indicated that HPW-RX40 binds to the active site of PDI by forming hydrogen bonds. In addition, HPW-RX40 neither affected the cell viability nor induced endoplasmic reticulum stress in human cancer A549 and MDA-MB-231 cells. Taken together, our results suggest that HPW-RX40 is a reversible and non-cytotoxic PDI inhibitor with antiplatelet effects, and it may have a potential for development of novel antithrombotic agents.


Subject(s)
Blood Platelets/drug effects , Chlorobenzoates/pharmacology , Enzyme Inhibitors/pharmacology , Platelet Activation , Protein Disulfide-Isomerases/metabolism , Styrenes/pharmacology , Animals , Binding Sites , Blood Platelets/immunology , Cell Line, Tumor , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Protein Binding , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/chemistry
10.
Eur J Med Chem ; 109: 59-74, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26756315

ABSTRACT

A new class of pyrrolo[2,1-c][1,4]benzodiazepine-Gallic hybrid agents (PBD-GA) conjugated through alkyl spacers has been designed and synthesized. The combination of these two core pharmacophores with modification in the C-8 position of the PBD ring with alkyl spacers afforded oxygen-tethered compounds 5a-5d and amide-tethered analogues 11a-11d with improved anticancer activity for two melanoma cell lines, A375 and RPMI7951, differing in their p53 status. The agents 5a-5d were cytotoxic in melanoma compared to agents 11a-11d. In particular, compounds 5b and 5c were found to possess the most potent activity compared with other hybrid agents and were proved with the help of quantitative structure activity relationship studies (QSAR). These PBD conjugates caused S phase arrest for the A375 cell line via increased reactive oxygen species (ROS) generation, deoxyribonucleic acid (DNA) damage, ataxia telangiectasia mutated (ATM)/ATM-Rad3-related (ATR) and checkpoint kinases 1 (Chk1) activation. Moreover, the PBD-GA induced A375 apoptotic cell death followed through p53 (ATM downstream target) increase, B-cell leukemia-xL (Bcl-xL) and mitochondrial membrane potential (ΔΨmt) decrease, cytochrome c release, and caspase-3/Poly Adp Ribose Polymerase (PARP) cleavage. On the other hand, mutant p53 RPMI7951 cell death occurred by PBD-GA-mediated mitochondria- and caspase-dependent pathways via lysosomal membrane permeabilization (LMP), but not through p53 signaling. Finally, compound 5b was shown to reduce murine melanoma size in a mouse model. These results suggest that the PBD-GA could be used as a useful chemotherapeutic agent in melanoma with activated p53 or mutant p53.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Benzodiazepines/chemistry , Benzodiazepines/therapeutic use , Melanoma/drug therapy , Pyrroles/chemistry , Pyrroles/therapeutic use , Skin Neoplasms/drug therapy , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Female , Gallic Acid/chemistry , Gallic Acid/therapeutic use , Humans , Melanoma/metabolism , Melanoma/pathology , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred ICR , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Models, Molecular , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Skin/drug effects , Skin/metabolism , Skin/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...