Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Bioengineering (Basel) ; 11(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38671781

ABSTRACT

Efforts are ongoing to enhance the functionality of human acellular dermal matrices (hADMs), which are extensively utilized in reconstructive surgeries. Among these efforts, plasma treatments, particularly vacuum plasma treatments, have recently emerged in the medical field. This study aims to investigate the efficacy of a vacuum plasma treatment in enhancing the biocompatibility and biointegration of hADMs. Utilizing a plasma activator (ACTILINK reborn, Plasmapp Co., Ltd., Daejeon, Republic of Korea), hADMs were treated and evaluated through in vitro and in vivo analyses. Hydrophilicity changes were gauged by the blood absorption times, while SEM imaging was used to analyze physical surface deformation. Protein adsorption was measured with fluorescently labeled bovine serum albumin and fibronectin. For the in vivo study, mice were implanted with plasma-treated and untreated hADMs, and the post-implantation effects were analyzed through histological and immunofluorescence microscopy. The plasma-treated hADMs demonstrated a significantly enhanced hydrophilicity compared to the untreated samples. SEM imaging confirmed the maintenance of the microroughness after the treatment. The treated hADMs showed a significant reduction in fibronectin adsorption, a critical factor for cellular adhesion. In vivo, the plasma-treated hADMs exhibited reduced capsule formation and enhanced fibroblast infiltration, indicating improved biocompatibility and integration. These findings highlight the potential of a plasma treatment to enhance the performance of hADMs in clinical settings, offering a promising avenue for improving reconstructive surgery outcomes.

2.
ACS Appl Mater Interfaces ; 16(19): 25136-25147, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38687307

ABSTRACT

Niobium oxide (Nb2O5) is a versatile semiconductor material with photochromic properties. This study investigates the local structure of noncrystalline, short-range-ordered niobium oxide synthesized via a sol-gel method. X-ray atomic pair distribution function analysis unravels the structural arrangements within the noncrystalline materials at a local scale. In the following, in situ scattering and diffraction experiments elucidate the heat-induced structure transformation of the amorphous material into crystalline TT-Nb2O5 at 550 °C. In addition, the effect of photocatalytic conditions on the structure of the material was investigated by exposing the short-range-ordered and crystalline materials to ultraviolet light, resulting in a reversible color change from white to dark brown or blue. This photochromic response is due to the reversible elongation of the nearest Nb-O neighbors, as shown by local structure analysis based on in situ PDF analyses. Optical band gap calculations based on the ultraviolet-visible spectra collected for both the short-range-ordered and crystalline materials show that the band gap values reduced for the darkened materials return to their initial state after bleaching. Furthermore, electron energy loss spectroscopy reveals the reduction of Nb5+ to Nb4+ centers as a persistent effect. The study establishes a correlation between the band gap and the structure of niobium oxide, providing insights into the structure-performance relation at the atomic level.

3.
Angew Chem Int Ed Engl ; 63(23): e202404496, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38501354

ABSTRACT

The selective oxidative coupling of phenol derivatives, involving carbon-carbon (C-C) and carbon-oxygen (C-O) bond formation, has emerged as a critical approach in the synthesis of natural products. However, achieving precise control over the selectivity in coupling reactions of unsubstituted phenols utilizing solar light as the driving force remains a big challenge. In this study, we report a series of porous Cs3Bi2X9 (X=Cl, Br, I) photocatalysts with tailored band gaps and compositions engineered for efficient solar-light-driven oxidative phenol coupling. Notably, p-Cs3Bi2Br9 exhibited about 73 % selectivity for C-C coupling, displaying a high formation rate of 47.3 µmol gcat -1 h-1 under solar radiation. Furthermore, this approach enables control of the site-selectivity for phenol derivatives on Cs3Bi2X9, enhancing C-C coupling. The distinctive porous structure and appropriate band-edge positions of Cs3Bi2Br9 facilitated efficient charge separation, and surface interaction/activation of phenolic hydroxyl groups, resulting in the kinetically preferred formation of C-C over C-O bond. Mechanistic insights into the reaction pathway, supported by comprehensive control experiments, unveiled the crucial role of interfacial charge transfers and Lewis acid Bi sites in stabilizing phenolic intermediates, thereby directing the regioselectivity of diradical couplings and resulting in the formation of unsymmetrical biphenols.

4.
Adv Med Sci ; 68(2): 265-269, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37619439

ABSTRACT

PURPOSE: Urine output (UO) is an important intraoperative parameter that is not yet electronically monitored. We compared an automatic urinometer (AU) based on a smart scale with a manual urinometer (MU). PATIENTS AND METHODS: This prospective study investigated the hourly UO of 35 preoperative patients with an indwelling urinary catheter using AU, MU, and cylinder measurements. Data were analyzed using the Bland-Altman method. A questionnaire related to the use of the AU was completed by medical staff (n=25). RESULTS: Compared to the cylinder measurements, the differences in measurements by the AU and the MU were -6.31 â€‹± â€‹15.03 â€‹mL/h (p=0.018) and 20.26 â€‹± â€‹26.81 â€‹mL/h (p=0.001), respectively. The r values for the comparison of cylinder measurements with AU and MU values were 0.985 (p<0.001) and 0.968 (p<0.001), respectively. Bland-Altman analyses showed that cylinder measurements had better agreement with the AU measurements than with the MU measurements. Also, the medical staff reported that the use of the AU was easier to learn than the use of the MU (p<0.001). CONCLUSIONS: Compared to the MU values, AU values were noninferior; they had significantly less bias and temporal deviation. Additionally, the medical staff reported that the use of the AU was easier to learn than the use of the MU.


Subject(s)
Operating Rooms , Humans , Prospective Studies
5.
Aesthetic Plast Surg ; 47(6): 2833-2840, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37069348

ABSTRACT

BACKGROUND: Human acellular dermal matrix (hADM) has found applications in a variety of settings, particularly in breast surgery. The most common hADM is a sheet. Recently, an injectable hADM has been introduced; we compared the biocompatibility and long-term structural integrity of, an injectable hADM and a sheet-type hADM in mice. METHODS: An injectable hADM (experimental group) and a sheet-type hADM (control group) were implanted into sub-panniculus pockets on the backs of 50 mice. The animals were sacrificed 2, 4, 8, 12, or 24 weeks later and the hADMs and surrounding tissues were recovered and stained for histopathological analyses. The microscopic endpoints included the thickness of the hADM and capsule around the hADM, and the extents of fibroblast proliferation and neovascularization. RESULTS: No animal developed a complication or infection. The capsule was significantly thinner in the experimental than the control group. There were no significant differences between groups in the hADM thickness. Microscopically, the fibroblast density inside the hADM was significantly higher in the experimental group. The fibroblasts inside of the hADM lay significantly deeper in the experimental group. Similarly, the experimental group exhibited significantly deeper microvessels inside the hADM. CONCLUSIONS: The injectable hADM had a thinner capsule thickness (more biocompatible), than the sheet-type hADM. It maintained its thickness as well as the sheet-type hADM and had a more fibroblast proliferation and neovascularization. This means the tissue incorporation and long-term structural integrity of the injectable hADM may be as good as or better than that of the sheet-type hADM. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Acellular Dermis , Breast Implants , Humans , Animals , Mice , Fibroblasts
6.
J Clin Monit Comput ; 37(5): 1401-1407, 2023 10.
Article in English | MEDLINE | ID: mdl-36933168

ABSTRACT

This study aimed to investigate the effect of preoperative education using virtual reality (VR) on preoperative anxiety and information desire. The participants were randomly assigned to the VR group and control group. The VR group received preoperative education using VR content describing preoperative and postoperative processes and their management, and the control group received preoperative education with traditional verbal education. Preoperative anxiety and information desire were measured using the Amsterdam Preoperative Anxiety and Information Scale (APAIS). Additionally, patient satisfaction was investigated. Preoperative anxiety (APAIS-A) and information desire (APAIS-I) scores were statistically significantly different between the VR group and the control group (p < 0.001). Patient satisfaction was not statistically significant (p = 0.147). Preoperative education using VR effectively reduced preoperative anxiety and information desire.Trial registration CRIS, KCT0007489. Registered 30 June 2022. http://cris.nih.go.kr/cris/ .


Subject(s)
Anxiety , Virtual Reality , Humans , Anxiety/prevention & control , Preoperative Care , Patient Satisfaction
7.
Korean J Clin Oncol ; 19(2): 60-68, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38229490

ABSTRACT

PURPOSE: The isocitrate dehydrogenase (IDH) family plays an essential role in metabolism and energy production. The relative expression levels of IDH isoforms (IDH1, IDH2, and IDH3) have prognostic significance in several malignancies, including breast carcinoma. However, the IDH isozyme expression levels in different cancer stages and types have not been determined in breast carcinoma tissues. METHODS: We analyzed the messenger RNA (mRNA) and protein levels of IDH (IDH1, IDH2, and IDH3A) and α-ketoglutarate (α-KG) in 59 breast carcinoma tissues. RESULTS: The mRNA level of IDH2 was significantly increased at stages 2 and 3 in triple-negative and (ER-/PR-/HER+) breast cancers. However, the elevated α-KG level was only observed in stages 2 and 3, with no differences in the various breast carcinoma types. Western blotting analysis showed that IDH2 protein expression increased in the patient tissues and cell lines. An in vitro study showed IDH2 downregulation in the triple-negative breast cancer cell line MDA-MB-231 that inhibited cell proliferation and migration and induced cell cycle arrest in the G0/G1 phase. CONCLUSION: These findings suggest that different from IDH1 and IDH3, IDH2 is more highly expressed in stages 2 and 3 breast cancer tissues, especially in triple-negative breast cancer. IDH2 potentially serves as a target to detect unknown mechanisms in breast cancer.

8.
Angew Chem Int Ed Engl ; 61(50): e202209555, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36289044

ABSTRACT

While higher selectivity of nitrogen reduction reaction (NRR) to ammonia (NH3 ) is always achieved in alkali, the selectivity dependence on nitrogen (N2 ) protonation and mechanisms therein are unrevealed. Herein, we profile how the NRR selectivity theoretically relies upon the first protonation that is collectively regulated by proton (H) abundance and adsorption-desorption, along with intermediate-*NNH formation. By incorporating electronic metal modulators (M=Co, Ni, Cu, Zn) in nitrogenase-imitated model-iron polysulfide (FeSx), a series of FeMSx catalysts with tailorable protonation kinetics are obtained. The key intermediates behaviors traced by in situ FT-IR and Raman spectroscopy and operando electrochemical impedance spectroscopy demonstrate the strong protonation kinetics-dependent selectivity that mathematically follows a log-linear Bradley curve. Strikingly, FeCuSx exhibits a record-high selectivity of 75.05 % at -0.1 V (vs. RHE) for NH3 production in 0.1 M KOH electrolyte.

9.
ACS Nano ; 16(9): 15297-15309, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36099061

ABSTRACT

Exploring single-atom catalysts (SACs) for the nitrate reduction reaction (NO3-; NitRR) to value-added ammonia (NH3) offers a sustainable alternative to both the Haber-Bosch process and NO3--rich wastewater treatment. However, due to the insufficient electron deficiency and unfavorable electronic structure of SACs, resulting in poor NO3--adsorption, sluggish proton (H*) transfer kinetics, and preferred hydrogen evolution, their NO3--to-NH3 selectivity and yield rate are far from satisfactory. Herein, a systematic theoretical prediction reveals that the local electron deficiency of an f-block Gd single atom (GdSA) can be significantly regulated upon coordination with oxygen-defect-rich NiO (GdSA-D-NiO400) support. Thus, facilitating stronger NO3- adsorption via strong Gd5d-O2p orbital coupling and further improving the protonation kinetics of adsorption intermediates by rapid H* capture from water dissociation catalyzed by the adjacent oxygen vacancy site along with suppressed H* dimerization synergistically boosts the NH3 selectivity/yield rate. Motivated by DFT prediction, we delicately stabilized electron-deficient (strongly electrophilic) GdSA on D-NiO400 (∼84% strong electrophilic sites), which exhibited excellent alkaline NitRR activity (NH3 Faradaic efficiency ∼97% and yield rate ∼628 µg/(mgcat h)) along with superior structural stability, as revealed by in situ Raman spectroscopy, significantly outperforming weakly electrophilic Gd nanoparticles, defect-free GdSA-P-NiO400, and reported state-of-the-art catalysts.

11.
Medicina (Kaunas) ; 58(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35454385

ABSTRACT

Background and Objectives; Triple-negative breast cancer (TNBC) is associated with poor patient prognosis because of its multiple molecular features. Thus, more effective treatment for TNBC is urgently needed. This study determined the possible involvement of ERK1/2 activation in cisplatin-induced cytotoxicity in TNBC by providing additional eribulin treatment. Materials and Methods; We investigated cell viability and apoptosis caused by eribulin, cisplatin, or co-treatment in HCC38, MDA-MB-231, and SKBR3 human breast cancer cells. Results; Cisplatin significantly lowered cell viability and caused high apoptotic cell death in all breast cancer cell lines. The viability of TNBC cells was significantly lower in the group co-treated with cisplatin and eribulin than in the cisplatin-only treatment group. Additional eribulin treatment significantly enhanced PARP cleavage and caspase-3 activity in cisplatin-treated TNBC cells. Moreover, cisplatin treatment activated ERK1/2 in all breast cancer cell lines. The cisplatin and eribulin combination synergistically activated ERK1/2 in TNBC cells compared with the cisplatin-only treatment. Administration of the ERK1/2 inhibitor PD98059 increased the viability of TNBC cells treated with cisplatin plus eribulin. Conclusions; Eribulin could synergize the cytotoxic and apoptotic activities of cisplatin and increase ERK1/2 activation, thus enhancing anti-cancer effects against TNBC cells.


Subject(s)
Triple Negative Breast Neoplasms , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , Cisplatin/therapeutic use , Furans , Humans , Ketones , Mitogen-Activated Protein Kinase 3/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism
12.
Angew Chem Int Ed Engl ; 61(9): e202114160, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-34964231

ABSTRACT

Amorphization of the support in single-atom catalysts is a less researched concept for promoting catalytic kinetics through modulating the metal-support interaction (MSI). We modeled single-atom ruthenium (RuSAs ) supported on amorphous cobalt/nickel (oxy)hydroxide (Ru-a-CoNi) to explore the favorable MSI between RuSAs and the amorphous skeleton for the alkaline hydrogen evolution reaction (HER). Differing from the usual crystal counterpart (Ru-c-CoNi), the electrons on RuSAs are facilitated to exchange among local configurations (Ru-O-Co/Ni) of Ru-a-CoNi since the flexibly amorphous configuration induces the possible d-d electron transfer and medium-to-long range p-π orbital coupling, further intensifying the MSI. This embodies Ru-a-CoNi with enhanced water dissociation, alleviated oxophilicity, and rapid hydrogen migration, which results in superior durability and HER activity of Ru-a-CoNi, wherein only 15 mV can deliver 10 mA cm-2 , significantly lower than the 58 mV required by Ru-c-CoNi.

13.
Nat Commun ; 12(1): 6766, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34799571

ABSTRACT

Single-atom-catalysts (SACs) afford a fascinating activity with respect to other nanomaterials for hydrogen evolution reaction (HER), yet the simplicity of single-atom center limits its further modification and utilization. Obtaining bimetallic single-atom-dimer (SAD) structures can reform the electronic structure of SACs with added atomic-level synergistic effect, further improving HER kinetics beyond SACs. However, the synthesis and identification of such SAD structure remains conceptually challenging. Herein, systematic first-principle screening reveals that the synergistic interaction at the NiCo-SAD atomic interface can upshift the d-band center, thereby, facilitate rapid water-dissociation and optimal proton adsorption, accelerating alkaline/acidic HER kinetics. Inspired by theoretical predictions, we develop a facile strategy to obtain NiCo-SAD on N-doped carbon (NiCo-SAD-NC) via in-situ trapping of metal ions followed by pyrolysis with precisely controlled N-moieties. X-ray absorption spectroscopy indicates the emergence of Ni-Co coordination at the atomic-level. The obtained NiCo-SAD-NC exhibits exceptional pH-universal HER-activity, demanding only 54.7 and 61 mV overpotentials at -10 mA cm-2 in acidic and alkaline media, respectively. This work provides a facile synthetic strategy for SAD catalysts and sheds light on the fundamentals of structure-activity relationships for future applications.

14.
Nat Commun ; 12(1): 5676, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584105

ABSTRACT

The poor catalyst stability in acidic oxidation evolution reaction (OER) has been a long-time issue. Herein, we introduce electron-deficient metal on semiconducting metal oxides-consisting of Ir (Rh, Au, Ru)-MoO3 embedded by graphitic carbon layers (IMO) using an electrospinning method. We systematically investigate IMO's structure, electron transfer behaviors, and OER catalytic performance by combining experimental and theoretical studies. Remarkably, IMO with an electron-deficient metal surface (Irx+; x > 4) exhibit a low overpotential of only ~156 mV at 10 mA cm-2 and excellent durability in acidic media due to the high oxidation state of metal on MoO3. Furthermore, the proton dissociation pathway is suggested via surface oxygen serving as proton acceptors. This study suggests high stability with high catalytic performance in these materials by creating electron-deficient surfaces and provides a general, unique strategy for guiding the design of other metal-semiconductor nanocatalysts.

15.
J Microbiol Biotechnol ; 31(10): 1430-1437, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34489375

ABSTRACT

Cronobacter sakazakii is an opportunistic pathogenic bacterium found in powdered infant formula and is fatal to neonates. Antibiotic resistance has emerged owing to overuse of antibiotics. Therefore, demand for high-yield bacteriophages as an alternative to antibiotics has increased. Accordingly, we developed a modified mass-production method for bacteriophages by introducing a two-stage self-cycling (TSSC) process, which yielded high-concentration bacteriophage solutions by replenishing the nutritional medium at the beginning of each process, without additional challenge. pH of the culture medium was monitored in real-time during C. sakazakii growth and bacteriophage CS01 propagation, and the changes in various parameters were assessed. The pH of the culture medium dropped to 5.8 when the host bacteria reached the early log phase (OD540 = 0.3). After challenge, it decreased to 4.65 and then recovered to 4.94; therefore, we set the optimum pH to challenge the phage at 5.8 and that to harvest the phage at 4.94. We then compared phage production during the TSSC process in jar-type bioreactors and the batch culture process in shaker flasks. In the same volume of LB medium, the concentration of the phage titer solution obtained with the TSSC process was 24 times higher than that obtained with the batch culture process. Moreover, we stably obtained high concentrations of bacteriophage solutions for three cycles with the TSSC process. Overall, this modified TSSC process could simplify large-scale production of bacteriophage CS01 and reduce the unit cost of phage titer solution. These results could contribute to curing infants infected with antibiotic-resistant C. sakazakii.


Subject(s)
Bacteriophages/growth & development , Bioreactors , Cronobacter sakazakii/virology , Virus Cultivation/methods , Culture Media , Food Microbiology , Infant Formula/microbiology
16.
Chem Sci ; 12(28): 9619-9629, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34349934

ABSTRACT

Photocatalytic N2 fixation to NH3 via defect creation on TiO2 to activate ultra-stable N[triple bond, length as m-dash]N has drawn enormous scientific attention, but poor selectivity and low yield rate are the major bottlenecks. Additionally, whether N2 preferentially adsorbs on phase-selective defect sites on TiO2 in correlation with appropriate band alignment has yet to be explored. Herein, theoretical predictions reveal that the defect sites on disordered anatase (Ad) preferentially exhibit higher N2 adsorption ability with a reduced energy barrier for a potential-determining-step (*N2 to NNH*) than the disordered rutile (Rd) phase of TiO2. Motivated by theoretical simulations, we synthesize a phase-selective disordered-anatase/ordered-rutile TiO2 photocatalyst (Na-Ad/Ro) by sodium-amine treatment of P25-TiO2 under ambient conditions, which exhibits an efficient NH3 formation rate of 432 µmol g-1 h-1, which is superior to that of any other defect-rich disordered TiO2 under solar illumination with a high apparent quantum efficiency of 13.6% at 340 nm. The multi-synergistic effects including selective N2 chemisorption on the defect sites of Na-Ad with enhanced visible-light absorption, suitable band alignment, and rapid interfacial charge separation with Ro enable substantially enhanced N2 fixation.

17.
ACS Nano ; 15(9): 15017-15026, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34405681

ABSTRACT

Efficient transition metal oxide electrocatalysts for the alkaline hydrogen evolution reaction (HER) have received intensive attention to energy conversion but are limited by their sluggish water dissociation and unfavorable hydrogen migration and coupling. Herein, systematic density functional theory (DFT) predicts that on representative NiO, the hydroxylation (OH-) and heterointerface coupled with metallic Cu can respectively reduce the energy barrier of water dissociation and facilitate hydrogen spillover. Motivated by theoretical predictions, we subtly designed a delicate strategy to realize the electrochemical OH- modification in KOH with moderate concentration (HOM-NiO) and to channel rapid hydrogen spillover at the heterointerface of HOM-NiO and Cu, ensuring an enhanced HER kinetic. This HOM-NiO/Cu is systematically investigated by in situ XAS and electrochemical simulations, verifying its extraordinary merits for HER including the enhanced water dissociation, alleviated oxophilicity that is advantageous for consecutive adsorptions of water, and accelerated hydrogen spillover, thereby exhibiting superb HER activity with 33 and 310 mV overpotentials at the current densities of 10 and 1000 mA cm-2 in 1.0 M KOH, outperforming the Pt/C. This study might provide a reasonable strategy for the functionalized design of superior electrocatalysts.

18.
Plast Reconstr Surg Glob Open ; 9(6): e3623, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34123688

ABSTRACT

Prepectoral breast reconstruction through a small axillary incision during endoscopic-assisted nipple-sparing mastectomy or robotic nipple-sparing mastectomy is difficult. Cases involving implants covered with an acellular dermal matrix (ADM) are particularly difficult. Therefore, a new delivery technique for ADM-covered implants is needed. The ADM pocket for complete coverage of the implant is made with double-crossed ADMs. The pocket end is open and sutured at the funnel entry. After insetting the ADM pocket at the mastectomy site through an axillary incision, the implant is delivered from a funnel to the ADM pocket by squeezing. Prepectoral breast reconstruction with the new delivery technique for implants covered with ADM pockets proved easy and safe. Our new implant delivery technique could be a good option for prepectoral breast reconstruction after minimal breast surgery.

19.
Mater Chem Phys ; 258: 123884, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33041414

ABSTRACT

A binder-free attachment method for TiO2 on a substrate has been sought to retain high active photocatalysis. Here, we report a binder-free covalent coating of phase-selectively disordered TiO2 on a hydroxylated silicon oxide (SiO2) substrate through rapid microwave treatment. We found that Ti-O-Si and Ti-O-Ti bonds were formed through a condensation reaction between the hydroxyl groups of the disordered TiO2 and Si substrate, and the disordered TiO2 nanoparticles themselves, respectively. This covalent coating approach can steadily hold the active photocatalytic materials on the substrates and provide long-term stability. The binder-free disordered TiO2 coating film can have a thickness (above 38 µm) with high surface integrity with a strong adhesion force (15.2 N) against the SiO2 substrate, which leads to the production of a rigid and stable TiO2 film. This microwave treated TiO2 coating film showed significant volatile organic compounds degradation abilities under visible light irradiation. The microwave coated selectively reduced TiO2 realized around 75% acetaldehyde degradation within 12 h and almost 90% toluene degradation after 9 h, also retains stable photodegradation performance during the cycling test. Thus, the microwave coating approach allowed the preparation of the binder-free TiO2 film as a scalable and cost-effective method to manufacture the TiO2 film that shows an excellent coating quality and strengthens the application as a photocatalyst under severe conditions.

20.
Food Sci Anim Resour ; 40(5): 746-757, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32968727

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is the major pathogenic E. coli that causes diarrhea and edema in post-weaning piglets. In this study, we describe the morphology and characteristics of ØCJ19, a bacteriophage that infects ETEC, and performed genetic analysis. Phage ØCJ19 belongs to the family Myoviridae. One-step growth curve showed a latent phase of 5 min and burst size of approximately 20 phage particles/infected cell. Phage infectivity was stable for 2 h between 4°C and 55°C, and the phage was stable between pH 3 and 11. Genetic analysis revealed that phage ØCJ19 has a total of 49,567 bases and 79 open reading frames (ORFs). The full genomic sequence of phage ØCJ19 showed the most similarity to an Escherichia phage, vB_EcoS_ESCO41. There were no genes encoding lysogeny, toxins, virulence factors, or antibiotic resistance in this phage, suggesting that this phage can be used safely as a biological agent to control ETEC. Comparative genomic analysis in terms of the tail fiber proteins could provide genetic insight into host recognition and the relationship with other coliphages. These results showed the possibility to improve food safety by applying phage ØCJ19 to foods of animal origin contaminated with ETEC and suggests that it could be the basis for establishing a safety management system in the animal husbandry.

SELECTION OF CITATIONS
SEARCH DETAIL
...