Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 413
Filter
1.
Biomater Sci ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712883

ABSTRACT

Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).

2.
J Hum Kinet ; 92: 29-41, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38736599

ABSTRACT

In this study, we tested several hypotheses related to changes in motor unit activation patterns after warm-up exercise. Fifteen healthy young men participated in the experiment and the main task was to produce voluntary torque through the elbow joint under the isometric condition. The experimental conditions consisted of two directions of torque, including flexion and extension, at two joint angles, 10° and 90°. Participants were asked to increase the joint torque to the maximal level at a rate of 10% of the maximum voluntary torque. The warm-up protocol followed the ACSM guidelines, which increased body temperature by approximately 1.5°C. Decomposition electromyography electrodes, capable of extracting multiple motor unit action potentials from surface signals, were placed on the biceps and triceps brachii muscles, and joint torque was measured on the dynamometer. The mean firing rate and the recruitment threshold of the decomposed motor units were quantified. In addition, a single motor unit activity from the spike train was quantified for each of five selected motor units. The magnitude of joint torque increased with the warm-up exercise for all the experimental conditions. The results of the motor unit analyses showed a positive and beneficial effect of the warm-up exercise, with an increase in both the mean firing rate and the recruitment threshold by about 56% and 33%, respectively, particularly in the agonist muscle. Power spectral density in the gamma band, which is thought to be the dominant voluntary activity, was also increased by the warm-up exercise only in the high threshold motor units.

3.
Sci Rep ; 14(1): 9331, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653988

ABSTRACT

The neurodevelopmental outcomes of preterm infants can be stratified based on the level of prematurity. We explored brain structural networks in extremely preterm (EP; < 28 weeks of gestation) and very-to-late (V-LP; ≥ 28 and < 37 weeks of gestation) preterm infants at term-equivalent age to predict 2-year neurodevelopmental outcomes. Using MRI and diffusion MRI on 62 EP and 131 V-LP infants, we built a multimodal feature set for volumetric and structural network analysis. We employed linear and nonlinear machine learning models to predict the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) scores, assessing predictive accuracy and feature importance. Our findings revealed that models incorporating local connectivity features demonstrated high predictive performance for BSID-III subsets in preterm infants. Specifically, for cognitive scores in preterm (variance explained, 17%) and V-LP infants (variance explained, 17%), and for motor scores in EP infants (variance explained, 15%), models with local connectivity features outperformed others. Additionally, a model using only local connectivity features effectively predicted language scores in preterm infants (variance explained, 15%). This study underscores the value of multimodal feature sets, particularly local connectivity, in predicting neurodevelopmental outcomes, highlighting the utility of machine learning in understanding microstructural changes and their implications for early intervention.


Subject(s)
Brain , Infant, Premature , Magnetic Resonance Imaging , Humans , Male , Brain/diagnostic imaging , Brain/growth & development , Female , Infant, Newborn , Magnetic Resonance Imaging/methods , Child, Preschool , Child Development/physiology , Machine Learning , Infant , Gestational Age , Infant, Extremely Premature/growth & development
4.
Reprod Toxicol ; 126: 108587, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38663639

ABSTRACT

Tdap is an acronym for tetanus(T), diphtheria(D), and acellular pertussis(aP), and is a preventive vaccine that combines vaccines against three diseases. BVN008 is a Tdap vaccine designed to protect against three diseases: diphtheria, tetanus, and pertussis. The lower-case "d" and "p" in Td and Tdap means these vaccines use smaller amounts of diphtheria and whooping cough. The lower doses are appropriate for adolescents and adults. The purpose of this study was to identify adverse effects in pregnant or lactating female Sprague-Dawley rats including maternal fertility and toxicity, and development of the embryos, fetus, and pups following intramuscular administration of BVN008. Two groups of 50 female Sprague-Dawley rats were administered four or five intramuscular injections of the vaccine (human dose of 0.5 mL at 4 and 2 weeks before pairing, on gestation day (GD) 8 and 15, and lactation day (LD) 7. A negative control group was administered 0.9% saline at the same dose four or five times. There were no adverse effects on fertility, reproductive performance, or maternal toxicity of the F0 females. There was no effect of developmental toxicity in F1 fetuses and pups including fetal body weight and morphology, postnatal growth, development, and behavior until weaning. Antibodies against tetanus, diphtheria, and pertussis were transferred to the F1 fetuses and F1 pups via placenta and milk. These results demonstrate that BVN008 had no detectable adverse effects in either the F0 female rats, the F1 fetuses or pups.

5.
Sci Rep ; 14(1): 9440, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658799

ABSTRACT

Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.


Subject(s)
Melanins , Pteridines , Ribosomal Protein S6 Kinases, 90-kDa , Signal Transduction , alpha-MSH , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Melanins/biosynthesis , Melanins/metabolism , Animals , alpha-MSH/metabolism , alpha-MSH/pharmacology , Mice , Cell Line, Tumor , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Ultraviolet Rays , Morpholines/pharmacology , Chromones/pharmacology , Nitriles/pharmacology , Butadienes/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Melanoma, Experimental/metabolism , Melanogenesis
6.
Cell Death Dis ; 15(4): 274, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632244

ABSTRACT

Accumulating evidence demonstrates that the activity regulation of ELK3, a member of the E26 transformation-specific oncogene family, is critical to regulating cell proliferation, migration, and survival in human cancers. However, the molecular mechanisms of how ELK3 induces chemoresistance in prostate cancer (PCa) have not been elucidated. In this study, we found that SPOP and ELK3 are an interacting partner. The interaction between SPOP and ELK3 resulted in increased ELK3 ubiquitination and destruction, assisted by checkpoint kinase-mediated ELK3 phosphorylation. Notably, the modulation of SPOP-mediated ELK3 protein stability affected the c-Fos-induced cell proliferation and invasion of PCa cells. The clinical involvement of the SPOP-ELK3 axis in PCa development was confirmed by an immunohistochemical assay on 123 PCa tissues, with an inverse correlation between increased ELK3 and decreased SPOP being present in ~80% of the specimens. This observation was supported by immunohistochemistry analysis using a SPOP-mutant PCa specimen. Finally, docetaxel treatment induced cell death by activating checkpoint kinase- and SPOP-mediated ELK3 degradation, while SPOP-depleted or SPOP-mutated PCa cells showed cell death resistance. Notably, this observation was correlated with the protein levels of ELK3. Taken together, our study reveals the precise mechanism of SPOP-mediated degradation of ELK3 and provides evidence that SPOP mutations contribute to docetaxel resistance in PCa.


Subject(s)
Prostatic Neoplasms , Proto-Oncogene Proteins c-ets , Humans , Male , Docetaxel/pharmacology , Docetaxel/therapeutic use , Mutation , Nuclear Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-fos/metabolism , Repressor Proteins/metabolism , Ubiquitination , Proto-Oncogene Proteins c-ets/metabolism , Drug Resistance, Neoplasm/genetics
7.
Macromol Biosci ; : e2300590, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488862

ABSTRACT

Nanoparticle (NP)-based drug delivery systems are conceived to solve poor water-solubility and chemical/physical instability, and their purpose expanded to target specific sites for maximizing therapeutic effects and minimizing unwanted events of payloads. Targeted sites are also narrowed from organs/tissues and cells to cytosol/organelles. Beyond specific site targeting, the particular release of payloads at the target sites is growing in importance. This review overviews various issues and their general strategies during multiple steps, from the preparation of drug-loaded NPs to their drug release at the target cytosol/organelles. In particular, this review focuses on current strategies for "first" delivery and "later" release of drugs to the cytosol or organelles of interest using specific stimuli in the target sites. Recognizing or distinguishing the presence/absence of stimuli or their differences in concentration/level/activity in one place from those in another is applied to stimuli-triggered release via bond cleavage or nanostructural transition. In addition, future directions on understanding the intracellular balance of stimuli and their counter-stimuli are demonstrated to synergize the therapeutic effects of payloads released from stimuli-sensitive NPs.

8.
J Microbiol ; 62(2): 125-134, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38480615

ABSTRACT

African swine fever virus (ASFV) is the causative agent of the highly lethal African swine fever disease that affects domestic pigs and wild boars. In spite of the rapid spread of the virus worldwide, there is no licensed vaccine available. The lack of a suitable cell line for ASFV propagation hinders the development of a safe and effective vaccine. For ASFV propagation, primary swine macrophages and monocytes have been widely studied. However, obtaining these cells can be time-consuming and expensive, making them unsuitable for mass vaccine production. The goal of this study was to validate the suitability of novel CA-CAS-01-A (CAS-01) cells, which was identified as a highly permissive cell clone for ASFV replication in the MA-104 parental cell line for live attenuated vaccine development. Through a screening experiment, maximum ASFV replication was observed in the CAS-01 cell compared to other sub-clones of MA-104 with 14.89 and log10 7.5 ± 0.15 Ct value and TCID50/ml value respectively. When CAS-01 cells are inoculated with ASFV, replication of ASFV was confirmed by Ct value for ASFV DNA, HAD50/ml assay, TCID50/ml assay, and cytopathic effects and hemadsoption were observed similar to those in primary porcine alveolar macrophages after 5th passage. Additionally, we demonstrated stable replication and adaptation of ASFV over the serial passage. These results suggest that CAS-01 cells will be a valuable and promising cell line for ASFV isolation, replication, and development of live attenuated vaccines.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/genetics , African Swine Fever/prevention & control , Vaccines, Attenuated/genetics , Viral Proteins/genetics , Sus scrofa , Vaccine Development , Cell Line
9.
Exp Mol Med ; 56(3): 686-699, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38480902

ABSTRACT

Cancer cells often exhibit resistance to apoptotic cell death, but they may be vulnerable to other types of cell death. Elucidating additional mechanisms that govern cancer cell death is crucial for developing new therapies. Our research identified cyclic AMP-responsive element-binding protein 3 (CREB3) as a crucial regulator and initiator of a unique cell death mechanism known as karyoptosis. This process is characterized by nuclear shrinkage, deformation, and the loss of nuclear components following nuclear membrane rupture. We found that the N-terminal domain (aa 1-230) of full-length CREB3 (CREB3-FL), which is anchored to the nuclear inner membrane (INM), interacts with lamins and chromatin DNA. This interaction maintains a balance between the outward force exerted by tightly packed DNA and the inward constraining force, thereby preserving INM integrity. Under endoplasmic reticulum (ER) stress, aberrant cleavage of CREB3-FL at the INM leads to abnormal accumulation of the cleaved form of CREB3 (CREB3-CF). This accumulation disrupts the attachment of CREB3-FL to the INM, resulting in sudden rupture of the nuclear membrane and the onset of karyoptosis. Proteomic studies revealed that CREB3-CF overexpression induces a DNA damage response akin to that caused by UVB irradiation, which is associated with cellular senescence in cancer cells. These findings demonstrated that the dysregulation of CREB3-FL cleavage is a key factor in karyoptotic cell death. Consequently, these findings suggest new therapeutic strategies in cancer treatment that exploit the process of karyoptosis.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Nuclear Envelope , Proteomics , Apoptosis , DNA , Nuclear Envelope/metabolism , Humans , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/metabolism
10.
Psychiatry Investig ; 21(2): 208-215, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38433420

ABSTRACT

OBJECTIVE: Impulsivity is a multifaceted construct that plays an important role in various problem behaviors in children and adolescents. The purpose of this study was to validate a Korean version of the short UPPS-P Impulsive Behavior Scale for Children. METHODS: Participants were 330 children (166 female) from 2 elementary schools in Korea and 94 attention deficit hyperactivity disorder (ADHD) children (23 female) from two major hospitals. The Korean short UPPS-P Impulsive Behavior Scale for Children (UPPS-P-C) (20 items), Child Behavior Checklist for Ages 6-18 (CBCL 6-18), and Barratt Impulsiveness Scale-11 (BIS-11) were administered. 107 children from the control group were retested 6 months later. RESULTS: Confirmatory factor analysis (CFA) conducted in the control group supported a 5-factor hierarchical model in which 1) positive and negative urgency factors are loaded on a higher-order factor of general urgency; 2) lack of perseveration and lack of premeditation factors are loaded on a higher-order factor of lack of conscientiousness; and 3) sensation seeking remained as a separate dimension. Reliability analysis demonstrated that the 5 factors of the Korean short UPPS-P-C had acceptable internal consistency and test-retest reliability. Lack of premeditation and lack of perseveration subscales showed significant correlations with measures of problem behaviors in CBCL and all the subscales were correlated with the BIS-11. The ADHD group showed significantly higher scores in lack of premeditation, lack of perseveration, positive urgency, and negative urgency subscales. CONCLUSION: This study indicates that the Korean version of short UPPS-P-C has adequate reliability and validity. It may be a valid tool to assess impulsivity of healthy children as well as ADHD.

11.
Biomed Pharmacother ; 173: 116319, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422654

ABSTRACT

BACKGROUND: Effects of Dictamnus dasycarpus Turcz. on allergic asthma and their underlying mechanisms remain unclarified. Thus, we investigated the effects of D. dasycarpus Turcz. water extract (DDW) on mucus hypersecretion in mice with ovalbumin (OVA)-induced asthma and human bronchial epithelial cells. METHODS: BALB/c mice were used to establish an OVA-induced allergic asthma model. Mice were grouped into the OVA sensitization/challenge, 100 and 300 mg/kg DDW treatment, and dexamethasone groups. In mice, cell counts in bronchoalveolar lavage fluid (BALF), serum and BALF analyses, and histopathological lung tissue analyses were performed. Furthermore, we confirmed the basic mechanism in interleukin (IL)-4/IL-13-treated human bronchial epithelial cells through western blotting. RESULTS: In OVA-induced asthma mice, DDW treatment reduced inflammatory cell number and airway hyperresponsiveness and ameliorated histological changes (immune cell infiltration, mucus secretion, and collagen deposition) in lung tissues and serum total immunoglobulin E levels. DDW treatment lowered BALF IL-4, IL-5, and IL-13 levels; reduced levels of inflammatory mediators, such as thymus- and activation-regulated chemokine, macrophage-derived chemokine, and interferon gamma-induced protein; decreased mucin 5AC (MUC5AC) production; decreased signal transducer and activator of transcription (STAT) 6 and STAT3 expression; and restored forkhead box protein A2 (FOXA2) expression. In IL-4/IL-13-treated human bronchial epithelial cells, DDW treatment inhibited MUC5AC production, suppressed STAT6 and STAT3 expression (related to mucus hypersecretion), and increased FOXA2 expression. CONCLUSIONS: DDW treatment modulates MUC5AC expression and mucus hypersecretion by downregulating STAT6 and STAT3 expression and upregulating FOXA2 expression. These findings provide a novel approach to manage mucus hypersecretion in asthma using DDW.


Subject(s)
Asthma , Dictamnus , Hepatocyte Nuclear Factor 3-beta , STAT3 Transcription Factor , Mice , Humans , Animals , Interleukin-13/metabolism , Interleukin-4/metabolism , Ovalbumin , Disease Models, Animal , Asthma/chemically induced , Asthma/drug therapy , Lung , Inflammation/metabolism , Mucus/metabolism , Bronchoalveolar Lavage Fluid , Mice, Inbred BALB C , Cytokines/metabolism , STAT6 Transcription Factor/metabolism
12.
J Clin Med ; 13(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38398428

ABSTRACT

Study Design: Consecutive case series. Objective: To propose a screw placement method in patients with extremely small lumbar pedicles (ESLPs) (<2 mm) to maintain screw density and correction power, without relying on the O-arm navigation system. Summary of Background Data: In scoliosis surgery, ESLPs can hinder probe passage, resulting in exclusion or substitution of the pedicle screws with a hook. Screw density affects correction power, making it necessary to maximize the number of screw placements, especially in the lumbar curve. Limited studies provide technical guidelines for screw placement in patients with ESLPs, independent of the O-arm navigation system. Methods: We enrolled 19 patients who underwent scoliosis correction surgery using our novel screw placement method for ESLPs. Clinical, radiological, and surgical parameters were assessed. After posterior exposure of the spine, the C-arm fluoroscope was rotated to obtain a true posterior-anterior view and both pedicles were symmetrically visualized. An imaginary pedicle outline was presumed based on the elliptical or linear shadow from the pedicle. The screw entry point was established at a 2 (or 10) o'clock position in the presumed pedicle outline. After adjusting the gear-shift convergence, both cortices of the transverse process were penetrated and the tip was advanced towards the lateral vertebral body wall, where an extrapedicular screw was placed with tricortical fixation. Results: Out of 90 lumbar screws in 19 patients, 33 screws were inserted using our novel method, without correction loss or complications during an average follow-up period of 28.44 months, except radiological loosening of one screw. Conclusions: Our new extrapedicular screw placement method into the vertebral body provides an easy, accurate, and safe alternative for scoliosis patients with ESLPs without relying on the O-arm navigation system. Surgeons must consider utilizing this method to enhance correction power in scoliosis surgery, regardless of the small size of the lumbar pedicle.

13.
Toxicol Res ; 40(1): 125-137, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223669

ABSTRACT

Fargesin, a bioactive lignan derived from Flos Magnoliae, possesses anti-inflammatory, anti-oxidative, anti-melanogenic, and anti-apoptotic effects. This study compared the metabolic profiles of fargesin in human, dog, monkey, mouse, and rat hepatocytes using liquid chromatography-high resolution mass spectrometry. In addition, we investigated the human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes responsible for fargesin metabolism. The hepatic extraction ratio of fargesin among the five species ranged from 0.59 to 0.78, suggesting that it undergoes a moderate-to-extensive degree of hepatic metabolism. During metabolism, fargesin generates three phase 1 metabolites, including fargesin catechol (M1) and O-desmethylfargesin (M2 and M3), and 11 phase 2 metabolites, including O-methyl-M1 (M4 and M5) via catechol O-methyltransferase (COMT), glucuronides of M1, M2, M4, and M5, and sulfates of M1-M5. The production of M1 from fargesin via O-demethylenation is catalyzed by CYP2C9, CYP3A4, CYP2C19, and CYP2C8 enzymes, whereas the formation of M2 and M3 (O-desmethylfargesin) is catalyzed by CYP2C9, CYP2B6, CYP2C19, CYP3A4, CYP1A2, and CYP2D6 enzymes. M4 is metabolized to M4 glucuronide by UGT1A3, UGT1A8, UGT1A10, UGT2B15, and UGT2B17 enzymes, whereas M4 sulfate is generated by multiple SULT enzymes. Fargesin is extensively metabolized in human hepatocytes by CYP, COMT, UGT, and SULT enzymes. These findings help to elucidate the pharmacokinetics and drug interactions of fargesin.

14.
Arch Pharm Res ; 47(2): 111-126, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182943

ABSTRACT

Aschantin, a tetrahydrofurofuran lignan with a 1,3-benzodioxole group derived from Flos Magnoliae, exhibits antioxidant, anti-inflammatory, cytotoxic, and antimicrobial activities. This study compared the metabolic profiles of aschantin in human, dog, mouse, and rat hepatocytes using liquid chromatography-high-resolution mass spectrometry. The hepatic extraction ratio of aschantin among the four species was 0.46-0.77, suggesting that it undergoes a moderate-to-extensive degree of hepatic metabolism. Hepatocyte incubation of aschantin produced 4 phase 1 metabolites, including aschantin catechol (M1), O-desmethylaschantin (M2 and M3), and hydroxyaschantin (M4), and 14 phase 2 metabolites, including O-methyl-M1 (M5 and M6) via catechol O-methyltransferase (COMT), six glucuronides of M1, M2, M3, M5, and M6, and six sulfates of M1, M2, M3, M5, and M6. Enzyme kinetic studies using aschantin revealed that the production of M1, a major metabolite, via O-demethylenation is catalyzed by cytochrome 2C8 (CYP2C8), CYP2C9, CYP2C19, CYP3A4, and CYP3A5 enzymes; the formation of M2 (O-desmethylaschantin) is catalyzed by CYP2C9 and CYP2C19; and the formation of M4 is catalyzed by CYP3A4 enzyme. Two glutathione (GSH) conjugates of M1 were identified after incubation of aschantin with human and animal liver microsomes in the presence of nicotinamide adenine dinucleotide phosphate and GSH, but they were not detected in the hepatocytes of all species. In conclusion, aschantin is extensively metabolized, producing 18 metabolites in human and animal hepatocytes catalyzed by CYP, COMT, UDP-glucuronosyltransferase, and sulfotransferase. These results can help in clarifying the involvement of metabolizing enzymes in the pharmacokinetics and drug interactions of aschantin and in elucidating GSH conjugation associated with the reactive intermediate formed from M1 (aschantin catechol).


Subject(s)
Benzodioxoles , Cytochrome P-450 CYP3A , Lignans , Humans , Rats , Mice , Animals , Dogs , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 CYP2C19/metabolism , Kinetics , Cytochrome P-450 CYP2C9/metabolism , Hepatocytes/metabolism , Microsomes, Liver/metabolism , Catechols
15.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-37885155

ABSTRACT

Normal cortical growth and the resulting folding patterns are crucial for normal brain function. Although cortical development is largely influenced by genetic factors, environmental factors in fetal life can modify the gene expression associated with brain development. As the placenta plays a vital role in shaping the fetal environment, affecting fetal growth through the exchange of oxygen and nutrients, placental oxygen transport might be one of the environmental factors that also affect early human cortical growth. In this study, we aimed to assess the placental oxygen transport during maternal hyperoxia and its impact on fetal brain development using MRI in identical twins to control for genetic and maternal factors. We enrolled 9 pregnant subjects with monochorionic diamniotic twins (30.03 ± 2.39 gestational weeks [mean ± SD]). We observed that the fetuses with slower placental oxygen delivery had reduced volumetric and surface growth of the cerebral cortex. Moreover, when the difference between placenta oxygen delivery increased between the twin pairs, sulcal folding patterns were more divergent. Thus, there is a significant relationship between placental oxygen transport and fetal brain cortical growth and folding in monochorionic twins.


Subject(s)
Placenta , Twins, Monozygotic , Female , Humans , Pregnancy , Fetal Development , Fetal Growth Retardation/metabolism , Oxygen/metabolism , Placenta/diagnostic imaging , Placenta/metabolism
16.
Health Hum Rights ; 25(2): 155-169, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38145137

ABSTRACT

This paper discusses economic inequality as a key social determinant of health. It highlights the potentially transformative role of social protection systems in addressing economic inequality and health inequalities. How to finance social protection and how to distribute benefits among people are key questions in the pursuit of a transformative social protection system that can adequately tackle economic inequalities. This paper argues that a human rights approach can provide a normative orientation in the political process that decides the distribution of burdens and benefits in relation to social protection, calling for an assessment of its impact on socioeconomic inequalities and on disadvantaged groups of people. While the right to social security is at the center of a human rights approach to social protection, the rights to health, education, housing, and work also provide important normative elements for social protection. A human rights-based social protection system requires comprehensive protection for major social risks and challenges throughout the life cycle; universal access to quality services such as health, education, child care, and services for older people or people with disabilities; and a progressive financing mechanism. In this regard, the International Labour Organization's Social Protection Floors Recommendation No. 202 provides strong guidance on the implementation of the right to social security for all.


Subject(s)
Human Rights , Social Determinants of Health , Humans , Aged , Socioeconomic Factors , Social Security , Public Policy
17.
Front Pediatr ; 11: 1225960, 2023.
Article in English | MEDLINE | ID: mdl-38034827

ABSTRACT

Background: A growing body of evidence suggests an association between a higher maternal pre-pregnancy body mass index (BMI) and adverse long-term neurodevelopmental outcomes for their offspring. Despite recent attention to the effects of maternal obesity on fetal and neonatal brain development, changes in the brain microstructure of preterm infants born to mothers with pre-pregnancy obesity are still not well understood. This study aimed to detect the changes in the brain microstructure of obese mothers in pre-pregnancy and their offspring born as preterm infants using diffusion tensor imaging (DTI). Methods: A total of 32 preterm infants (born to 16 mothers with normal BMI and 16 mothers with a high BMI) at <32 weeks of gestation without brain injury underwent brain magnetic resonance imaging at term-equivalent age (TEA). The BMI of all pregnant women was measured within approximately 12 weeks before pregnancy or the first 2 weeks of gestation. We analyzed the brain volume using a morphologically adaptive neonatal tissue segmentation toolbox and calculated the major white matter (WM) tracts using probabilistic maps of the Johns Hopkins University neonatal atlas. We investigated the differences in brain volume and WM microstructure between preterm infants of mothers with normal and high BMI. The DTI parameters were compared among groups using analysis of covariance adjusted for postmenstrual age at scan and multiple comparisons. Results: Preterm infants born to mothers with a high BMI showed significantly increased cortical gray matter volume (p = 0.001) and decreased WM volume (p = 0.003) after controlling for postmenstrual age and multiple comparisons. We found a significantly lower axial diffusivity in the uncinate fasciculus (UNC) in mothers with high BMI than that in mothers with normal BMI (1.690 ± 0.066 vs. 1.762 ± 0.101, respectively; p = 0.005). Conclusion: Our study is the first to demonstrate that maternal obesity impacts perinatal brain development patterns in preterm infants at TEA, even in the absence of apparent brain injury. These findings provide evidence for the detrimental effects of maternal obesity on brain developmental trajectories in offspring and suggest potential neurodevelopmental outcomes based on an altered UNC WM microstructure, which is known to be critical for language and social-emotional functions.

18.
Food Sci Biotechnol ; 32(12): 1745-1761, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37780595

ABSTRACT

Biofilm is one of the major problems in food industries and is difficult to be removed or prevented by conventional sanitizers. In this review, we discussed the extracellular matrix-degrading enzymes as a strategy to control biofilms of foodborne pathogenic and food-contaminating bacteria. The biofilms can be degraded by using the enzymes targeting proteins, polysaccharides, extracellular DNA, or lipids which mainly constitute the extracellular polymeric substances of biofilms. However, the efficacy of enzymes varies by the growth medium, bacterial species, strains, or counterpart microorganisms due to a high variation in the composition of extracellular polymeric substances. Several studies demonstrated that the combined treatment using conventional sanitizers or multiple enzymes can synergistically enhance the biofilm removal efficacies. In this review, the application of the immobilized enzymes on solid substrates is also discussed as a potential strategy to prevent biofilm formation on food contact surfaces.

19.
Food Chem Toxicol ; 179: 113994, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37598851

ABSTRACT

Phalloidin, a bicyclic heptapeptide found in Amanita mushroom, specifically binds to F-actin in the liver causing cholestatic hepatotoxicity. However, the toxicokinetics and tissue distribution properties of phalloidin as well as their underlying mechanisms have to be studied further. The area under the plasma concentration curve (AUC) of phalloidin increased in proportion to the doses (0.2, 0.4, and 0.8 mg/kg for intravenous injection and 2, 5, and 10 mg/kg for oral administration). Phalloidin exhibited dose-independent low volume of distribution (395.6-456.9 mL/kg) and clearance (21.4-25.5 mL/min/kg) and low oral bioavailability (2.4%-3.3%). This could be supported with its low absorptive permeability (0.23 ± 0.05 × 10-6 cm/s) in Caco-2 cells. The tissue-to-plasma AUC ratios of intravenously injected and orally administered phalloidin were the highest in the liver and intestines, respectively, and also high in the kidneys, suggesting that the liver, kidneys, and intestines could be susceptible to phalloidin exposure and that active transport via the hepatic and renal organic anion transporters (OATP1B1, OATP1B3, and OAT3) may contribute to the higher distribution of phalloidin in the liver and kidneys.


Subject(s)
Amanita , Animals , Mice , Humans , Toxicokinetics , Caco-2 Cells , Phalloidine , Tissue Distribution
20.
Traffic Inj Prev ; 24(7): 625-631, 2023.
Article in English | MEDLINE | ID: mdl-37477419

ABSTRACT

BACKGROUND: Child restraint systems (CRSs) significantly reduce risk of crash-related injury, however installation and use errors undermine their benefits. The National Highway Traffic Safety Administration (NHTSA) created the Ease of Use (EOU) rating system to help guide consumers and incentivize manufacturers to improve their products. The EOU rating system assigns one to five stars to four CRS features and overall. Our study assessed the relationship between EOU ratings and CRS installation and use errors documented in seat checks conducted by child passenger safety technicians (CPSTs). METHODS: We performed a secondary analysis of data from Safe Kids Illinois seat check records from 2015 through 2019 and EOU ratings from 2008 to 2020. Five types of errors were documented by CPSTs. Study authors (JYL and MLM) used a tiered system to match seat check model numbers to EOU ratings. We calculated chi-square statistics and performed logistic regression analyses to assess for EOU as a predictor of relevant CRS errors (e.g., tether errors for forward-facing CRSs). RESULTS: Our analyses included 2132 seat check observations, of which 217 (10.2%) were exact, 244 (10.5%) were probable, and 1671 (78.4%) were near matches via sorting and web search. Errors were most common for seat belts (70.7%) and least common for recline angle (36.9%). Star ratings for instructions, vehicle installation, and labels were associated with recline angle and seat belt errors. Star ratings for instructions, labels, and securing child were associated with harness errors. CRSs with 4-star and 5-star ratings had lower odds of errors for recline angle (Odds Ratio (OR) 0.62; 95% Confidence Interval (CI): 0.43, 0.89 and OR 0.31; 95% CI: 0.17, 0.56) lower anchors (OR 0.59; 95% CI 0.40, 0.89 and OR 0.38; 95% CI: 0.21, 0.68), and harness (OR 0.56; 95% CI: 0.40, 0.76 and OR 0.19; 95% CI: 0.10, 0.35) when compared with 1 and 2-star CRSs. CONCLUSIONS: This study provides evidence in support of NHTSA's EOU ratings as predictors of some CRS installation and use errors among caregivers who obtain seat checks. A higher star rating may be helpful for caregivers when choosing a CRS that will yield lower installation errors.


Subject(s)
Child Restraint Systems , Child , Humans , Accidents, Traffic , Seat Belts , Illinois , Probability
SELECTION OF CITATIONS
SEARCH DETAIL
...