Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Redox Biol ; 59: 102600, 2023 02.
Article in English | MEDLINE | ID: mdl-36630820

ABSTRACT

Current treatments for acute ischemic stroke aim to reinstate a normal perfusion in the ischemic territory but can also cause significant ischemia-reperfusion (IR) injury. Previous data in experimental models of stroke show that ischemia leads to the accumulation of succinate, and, upon reperfusion, the accumulated succinate is rapidly oxidized by succinate dehydrogenase (SDH) to drive superoxide production at mitochondrial complex I. Despite this process initiating IR injury and causing further tissue damage, the potential of targeting succinate metabolism to minimize IR injury remains unexplored. Using both quantitative and untargeted high-resolution metabolomics, we show a time-dependent accumulation of succinate in both human and mouse brain exposed to ischemia ex vivo. In a mouse model of ischemic stroke/mechanical thrombectomy mass spectrometry imaging (MSI) shows that succinate accumulation is confined to the ischemic region, and that the accumulated succinate is rapidly oxidized upon reperfusion. Targeting succinate oxidation by systemic infusion of the SDH inhibitor malonate upon reperfusion leads to a dose-dependent decrease in acute brain injury. Together these findings support targeting succinate metabolism upon reperfusion to decrease IR injury as a valuable adjunct to mechanical thrombectomy in ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Stroke , Mice , Animals , Humans , Ischemia , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Brain Ischemia/therapy , Brain Ischemia/metabolism , Stroke/etiology , Stroke/therapy , Stroke/metabolism , Succinic Acid/metabolism , Thrombectomy
3.
Redox Biol ; 60: 102605, 2023 04.
Article in English | MEDLINE | ID: mdl-36657187

ABSTRACT

Earlier studies revealed the presence of cysteine persulfide (CysSSH) and related polysulfide species in various mammalian tissues. CysSSH has both antioxidant and oxidant properties, modulates redox-dependent signal transduction and has been shown to mitigate oxidative stress. However, its functional relevance in the setting of myocardial ischaemia-reperfusion injury (IRI) remains unknown. The present study was undertaken to (1) study the dynamics of production and consumption of persulfides under normoxic and hypoxic conditions in the heart, and (2) determine whether exogenous administration of the CysSSH donor, cysteine trisulfide (Cys-SSS-Cys) at the onset of reperfusion rescues functional impairment and myocardial damage by interfering with lipid peroxidation. Utilising a well-established ex vivo Langendorff murine model, we here demonstrate that endogenous tissue concentrations of CysSSH are upregulated when oxygen supply is compromised (global myocardial ischaemia) and rapidly restored to baseline levels upon reperfusion, suggestive of active regulation. In a separate set of experiments, exogenous administration of Cys-SSS-Cys for 10 min at the onset of reperfusion was found to decrease malondialdehyde (MDA) concentrations, formation of 4-hydroxynonenal (4-HNE) protein adducts and rescue the heart from injury. Cys-SSS-Cys also restored post-ischaemic cardiac function, improving both coronary flow and left ventricular developed pressure (LVDP). Taken together, these results support the notion that endogenous CysSSH plays an important role as a "redox preconditioning" agent to combat the oxidative insult in myocardial IRI.


Subject(s)
Ischemic Preconditioning, Myocardial , Ischemic Preconditioning , Myocardial Reperfusion Injury , Mice , Animals , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Lipid Peroxidation , Cysteine/metabolism , Myocardium/metabolism , Mammals/metabolism
4.
Pharmacol Ther ; 223: 107819, 2021 07.
Article in English | MEDLINE | ID: mdl-33600852

ABSTRACT

Cardiovascular disease remains the leading cause of death worldwide despite major advances in technology and treatment, with coronary heart disease (CHD) being a key contributor. Following an acute myocardial infarction (AMI), it is imperative that blood flow is rapidly restored to the ischaemic myocardium. However, this restoration is associated with an increased risk of additional complications and further cardiomyocyte death, termed myocardial ischaemia reperfusion injury (IRI). Endogenously produced nitric oxide (NO) plays an important role in protecting the myocardium from IRI. It is well established that NO mediates many of its downstream functions through the 'canonical' NO-sGC-cGMP pathway, which is vital for cardiovascular homeostasis; however, this pathway can become impaired in the face of inadequate delivery of necessary substrates, in particular L-arginine, oxygen and reducing equivalents. Recently, it has been shown that during conditions of ischaemia an alternative pathway for NO generation exists, which has become known as the 'nitrate-nitrite-NO pathway'. This pathway has been reported to improve endothelial dysfunction, protect against myocardial IRI and attenuate infarct size in various experimental models. Furthermore, emerging evidence suggests that nitrite itself provides multi-faceted protection, in an NO-independent fashion, against a myriad of pathophysiologies attributed to IRI. In this review, we explore the existing pre-clinical and clinical evidence for the role of nitrate and nitrite in cardioprotection and discuss the lessons learnt from the clinical trials for nitrite as a perconditioning agent. We also discuss the potential future for nitrite as a pre-conditioning intervention in man.


Subject(s)
Cardiotonic Agents , Myocardial Reperfusion Injury , Nitrites , Cardiotonic Agents/pharmacology , Clinical Trials as Topic , Humans , Myocardial Reperfusion Injury/prevention & control , Nitrites/pharmacology
5.
Cancer Discov ; 11(3): 714-735, 2021 03.
Article in English | MEDLINE | ID: mdl-33318037

ABSTRACT

MAPK targeting in cancer often fails due to MAPK reactivation. MEK inhibitor (MEKi) monotherapy provides limited clinical benefits but may serve as a foundation for combination therapies. Here, we showed that combining a type II RAF inhibitor (RAFi) with an allosteric MEKi durably prevents and overcomes acquired resistance among cancers with KRAS, NRAS, NF1, BRAF non-V600, and BRAF V600 mutations. Tumor cell-intrinsically, type II RAFi plus MEKi sequester MEK in RAF complexes, reduce MEK/MEK dimerization, and uncouple MEK from ERK in acquired-resistant tumor subpopulations. Immunologically, this combination expands memory and activated/exhausted CD8+ T cells, and durable tumor regression elicited by this combination requires CD8+ T cells, which can be reinvigorated by anti-PD-L1 therapy. Whereas MEKi reduces dominant intratumoral T-cell clones, type II RAFi cotreatment reverses this effect and promotes T-cell clonotypic expansion. These findings rationalize the clinical development of type II RAFi plus MEKi and their further combination with PD-1/L1-targeted therapy. SIGNIFICANCE: Type I RAFi + MEKi are indicated only in certain BRAF V600MUT cancers. In contrast, type II RAFi + MEKi are durably active against acquired MEKi resistance across broad cancer indications, which reveals exquisite MAPK addiction. Allosteric modulation of MAPK protein/protein interactions and temporal preservation of intratumoral CD8+ T cells are mechanisms that may be further exploited.This article is highlighted in the In This Issue feature, p. 521.


Subject(s)
Drug Resistance, Neoplasm , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Immunity, Cellular/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mutation , Neoplasms/drug therapy , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Protein Stability , Treatment Outcome , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...