Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38328122

ABSTRACT

Vascular malformation, a key clinical phenotype of Proteus syndrome, lacks effective models for pathophysiological study and drug development due to limited patient sample access. To bridge this gap, we built a human vascular organoid model replicating Proteus syndrome's vasculature. Using CRISPR/Cas9 genome editing and gene overexpression, we created induced pluripotent stem cells (iPSCs) embodying the Proteus syndrome-specific AKTE17K point mutation for organoid generation. Our findings revealed that AKT overactivation in these organoids resulted in smaller sizes yet increased vascular connectivity, although with less stable connections. This could be due to the significant vasculogenesis induced by AKT overactivation. This phenomenon likely stems from boosted vasculogenesis triggered by AKT overactivation, leading to increased vascular sprouting. Additionally, a notable increase in dysfunctional PDGFRß+ mural cells, impaired in matrix secretion, was observed in these AKT-overactivated organoids. The application of AKT inhibitors (ARQ092, AZD5363, or GDC0068) reversed the vascular malformations; the inhibitors' effectiveness was directly linked to reduced connectivity in the organoids. In summary, our study introduces an innovative in vitro model combining organoid technology and gene editing to explore vascular pathophysiology in Proteus syndrome. This model not only simulates Proteus syndrome vasculature but also holds potential for mimicking vasculatures of other genetically driven diseases. It represents an advance in drug development for rare diseases, historically plagued by slow progress.

2.
APL Bioeng ; 7(4): 046103, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37854060

ABSTRACT

Atherosclerosis is a primary precursor of cardiovascular disease (CVD), the leading cause of death worldwide. While proprotein convertase subtilisin/kexin 9 (PCSK9) contributes to CVD by degrading low-density lipoprotein receptors (LDLR) and altering lipid metabolism, PCSK9 also influences vascular inflammation, further promoting atherosclerosis. Here, we utilized a vascular microphysiological system to test the effect of PCSK9 activation or repression on the initiation of atherosclerosis and to screen the efficacy of a small molecule PCSK9 inhibitor. We have generated PCSK9 over-expressed (P+) or repressed (P-) human induced pluripotent stem cells (iPSCs) and further differentiated them to smooth muscle cells (viSMCs) or endothelial cells (viECs). Tissue-engineered blood vessels (TEBVs) made from P+ viSMCs and viECs resulted in increased monocyte adhesion compared to the wild type (WT) or P- equivalents when treated with enzyme-modified LDL (eLDL) and TNF-α. We also found significant viEC dysfunction, such as increased secretion of VCAM-1, TNF-α, and IL-6, in P+ viECs treated with eLDL and TNF-α. A small molecule compound, NYX-1492, that was originally designed to block PCSK9 binding with the LDLR was tested in TEBVs to determine its effect on lowering PCSK9-induced inflammation. The compound reduced monocyte adhesion in P+ TEBVs with evidence of lowering secretion of VCAM-1 and TNF-α. These results suggest that PCSK9 inhibition may decrease vascular inflammation in addition to lowering plasma LDL levels, enhancing its anti-atherosclerotic effects, particularly in patients with elevated chronic inflammation.

3.
Adv Biol (Weinh) ; 5(4): e2000428, 2021 04.
Article in English | MEDLINE | ID: mdl-33852179

ABSTRACT

Atherosclerosis begins with the accumulation of cholesterol-carrying lipoproteins on blood vessel walls and progresses to endothelial cell dysfunction, monocyte adhesion, and foam cell formation. Endothelialized tissue-engineered blood vessels (TEBVs) have previously been fabricated to recapitulate artery functionalities, including vasoconstriction, vasodilation, and endothelium activation. Here, the initiation of atherosclerosis is emulated by designing branched TEBVs (brTEBVs) of various geometries treated with enzyme-modified low-density-lipoprotein (eLDL) and TNF-α to induce endothelial cell dysfunction and adhesion of perfused human monocytes. Locations of monocyte adhesion under pulsatile flow are identified, and the hemodynamics in the brTEBVs are characterized using particle image velocimetry (PIV) and computational fluid dynamics (CFD). Monocyte adhesion is greater at the side outlets than at the main outlets or inlets, and is greatest at larger side outlet branching angles (60° or 80° vs 45°). In PIV experiments, the branched side outlets are identified as atherosclerosis-prone areas where fluorescent particles show a transient swirling motion following flow pulses; in CFD simulations, side outlets with larger branching angles show higher vorticity magnitude and greater flow disturbance than other areas. These results suggest that the branched TEBVs with eLDL/TNF-α treatment provide a physiologically relevant model of early atherosclerosis for preclinical studies.


Subject(s)
Atherosclerosis , Arteries , Foam Cells , Humans , Lipoproteins, LDL , Pulsatile Flow
4.
J Biomed Mater Res A ; 106(12): 3001-3008, 2018 12.
Article in English | MEDLINE | ID: mdl-30303608

ABSTRACT

The immune system maintains a balance between protection and tolerance. Regulatory T cells (Tregs) function as a vital tolerance mechanism in the immune system to suppress effector immune cells. Additionally, Tregs can be utilized as a form of immunotherapy for autoimmune disorders. As T cells have previously been shown to exhibit sensitivity to the rigidity of an activating substrate upon activation via IL-2 secretion, we herein explore the previously unknown effect of substrate rigidity on the induction of Tregs from conventional naïve mouse CD4+ T cells. Substrates with modulatable rigidities ranging from a hundred kilopascals to a few megapascals were fabricated via poly(dimethylsiloxane). We found that there was a significant increase in Treg induction at lower substrate rigidities (i.e., E ~ 100 kPa) compared to higher rigidity levels (i.e., E ~ 3 MPa). To confirm that this significant difference in induction rate was truly related to T-cell mechanosensing, we administered compound Y-27632 to inhibit myosin contractility. In the presence of Y-27632, the myosin-based contractility was disrupted and, as a result, the difference in Treg induction caused by the substrate rigidity was abrogated. This study demonstrates that mechanosensing is involved in Treg induction and raises questions about the underlying molecular mechanisms involved in this process. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3001-3008, 2018.


Subject(s)
Biocompatible Materials/chemistry , CD4-Positive T-Lymphocytes/immunology , Dimethylpolysiloxanes/chemistry , T-Lymphocytes, Regulatory/immunology , Animals , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , CD4-Positive T-Lymphocytes/cytology , Cells, Cultured , Elastic Modulus , Lymphocyte Activation , Mechanotransduction, Cellular , Mice , T-Lymphocytes, Regulatory/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...