Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2313830, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588005

ABSTRACT

This study pioneers a chemical sensor based on surfactant-free aerosol-synthesized single-walled carbon nanotube (SWCNT) films for detecting nitrogen dioxide (NO2). Unlike conventional CNTs, the SWCNTs used in this study exhibit one of the highest surface-to-volume ratios. They show minimal bundling without the need for surfactants and have the lowest number of defects among reported CNTs. Furthermore, the dry-transferrable and facile one-step lamination results in promising industrial viability. When applied to devices, the sensor shows excellent sensitivity (41.6% at 500 ppb), rapid response/recovery time (14.2/120.8 s), a remarkably low limit of detection (below ≈0.161 ppb), minimal noise, repeatability for more than 50 cycles without fluctuation, and long-term stability for longer than 6 months. This is the best performance reported for a pure CNT-based sensor. In addition, the aerosol SWCNTs demonstrate consistent gas-sensing performance even after 5000 bending cycles, indicating their suitability for wearable applications. Based on experimental and theoretical analyses, the proposed aerosol CNTs are expected to overcome the limitations associated with conventional CNT-based sensors, thereby offering a promising avenue for various sensor applications.

2.
ACS Sens ; 6(11): 4145-4155, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34735765

ABSTRACT

In this research, a highly sensitive and selective hydrogen gas sensor was developed based on Cu-doped SnO2. Sensing characteristics were compared based on SnO2 doped with different concentrations of Cu, and the highest sensitivity and fastest response time were shown when 3% Cu was contained. A 3D structure was formed using a polystyrene to increase the surface-to-volume ratio, which allows more oxygen molecules to bond with the surface of the SnO2 sensing material. Extremely increased sensitivity was observed as compared to the planar structure. A temperature sensor and micro-heater were integrated into the sensor, and the surface temperature was maintained constant regardless of external influences. In addition, an electronic sensor interface was developed for the efficient analysis of real-time data. The developed sensor was wire-bonded to the flexible printed circuit board (FPCB) cable and connected with the sensor interface. Sensitivity and linearity measured based on the developed sensor and interface system were analyzed as 0.286%/ppm and 0.98, respectively, which were almost similar to the results observed by a digital multimeter (DMM). This indicates that our developed sensor system can be a very promising candidate for real-time measurement and can be applied in various fields. The enhanced sensitivity of 3% doped SnO2 toward hydrogen is attributed to the huge number of oxygen vacancies in the doped sample.


Subject(s)
Smart Materials , Tin Compounds , Electronics , Hydrogen , Temperature
3.
ACS Sens ; 6(3): 1012-1021, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33730484

ABSTRACT

Reduced graphene oxide and molybdenum disulfide (rGO:MoS2) are the most representative two-dimensional materials, which are promising for a humidity sensor owing to its high surface area, a large number of active sites, and excellent mechanical flexibility. Herein, we introduced a highly sensitive and stable rGO:MoS2-based humidity sensor integrated with a low-power in-plane microheater and a temperature sensor, directly insertable to transformer insulating oil, and analyzed by a newly developed customized sensor interface electronics to monitor the sensor's output variations in terms of relative humidity (RH) concentration. rGO:MoS2 sensing materials were synthesized by simple ultrasonication without using any additives or additional heating and selectively deposited on titanium/platinum (Ti/Pt) interdigitated electrodes on a SiO2 substrate using the drop-casting method. The significant sensing capability of p-n heterojunction formation between rGO and MoS2 was observed both in the air and transformer insulating oil environment. In air testing, the sensor exhibited an immense sensitivity of 0.973 kΩ/%RH and excellent linearity of ∼0.98 with a change of humidity from 30 to 73 %RH, and a constant resistance deviation with an inaccuracy rate of 0.13% over 400 h of continual measurements. In oil, the sensor showed a high sensitivity of 1.596 kΩ/%RH and stable repeatability for an RH concentration range between 34 and 63 %RH. The obtained results via the sensor interface were very similar to those measured with a digital multimeter, denoting that our developed total sensor system is a very promising candidate for real-time monitoring of the operational status of power transformers.


Subject(s)
Molybdenum , Silicon Dioxide , Electronics , Graphite , Humidity
4.
Sensors (Basel) ; 20(4)2020 Feb 23.
Article in English | MEDLINE | ID: mdl-32102203

ABSTRACT

An acousto-optic (AO) holographic display unit based on a suspended waveguide membrane was developed. The AO unit consists of a wide bandwidth chirp interdigital transducer (IDT) on a 20 µm thick suspended crystalline 128° YX LiNbO3 membrane, a light blocker with a 20 µm hole near the entrance, and an active lens near the exit. The 20 µm thickness of the floating membrane significantly enhanced surface acoustic wave (SAW) confinement. The light blocker was installed in front of the AO unit to enhance the coupling efficiency of the incident light to the waveguide membrane and to remove perturbations to the photodetector during measurement at the exit region. The active lens was vertically attached to the waveguide sidewall to collect the diffracted beam without loss and to modulate the focal length in free space through the applied voltage. As SAWs were radiated from the IDT, a Bragg grating with periodic refractive indexes was formed along the waveguide membrane. The grating diffracted incident light. The deflection angle and phase, and the intensity of the light beam were controlled by the SAW frequency and input power, respectively. The maximum diffraction efficiency achieved was approximately 90% for a 400 MHz SAW. COMSOL simulation and coupling of mode modeling were performed to optimize design parameters and predict device performance.

5.
ACS Appl Mater Interfaces ; 11(29): 25891-25900, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31260246

ABSTRACT

Metal oxide nanostructures are the most promising materials for the fabrication of advanced gas sensors. However, the main challenge of these gas sensors is humidity interference and issues related to the selectivity and high operating temperature, which limits their response in real-time applications. In this study, we proposed nanohybrids of Pt-functionalized Al2O3/ZnOcore-shell nanorods (NRs) for a real-time humidity-independent acetylene gas sensor. The core ZnO NRs have been fabricated on microelectromechanical system (MEMS) microheater, followed by a coating of a thin nanoscale moisture-blocking conformal Al2O3 shell by atomic layer deposition (ALD) and decoration of Pt NPs using photochemical deposition and e-beam evaporation. Prior to the fabrication, a COMSOL simulation was performed to optimize the microheater design and moisture-blocking layer thickness. A comparative study of the decoration of Pt NPs on the ZnO surface by photochemical (s-Pt/ZnO) and e-beam evaporation (e-Pt/ZnO) and a Al2O3 thin moisture-blocking shell layer (Pt/Al2O3/ZnO) in sensor response has been conducted. The fabricated sensors (s-Pt/ZnO) and (e-Pt/ZnO) showed a high response ΔR/R (%) of 96.46% and 68.15% to 200 ppm acetylene at 120 °C and detect trace concentrations of acetylene down to 1 ppm, but the response is influenced by humidity. Moreover, the sensor (Pt/Al2O3/ZnO) exhibited nearly the same sensing characteristics and high acetylene selectivity despite the wide range of humidity variation from 20% RH to 70% RH. The Pt-functionalized Al2O3/ZnOcore-shell NR-based sensor showed better sensing and stable performance than other sensors (s-Pt/ZnO and e-Pt/ZnO) under humidity conditions.

6.
Sci Rep ; 8(1): 2401, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29402953

ABSTRACT

A chipless, wireless current sensor system was developed using a giant magnetoimpedance (GMI) magnetic sensor and one-port surface acoustic wave (SAW) reflective delay line for real-time power monitoring in a current-carrying conductor. The GMI sensor has a high-quality crystalline structure in each layer, which contributes to a high sensitivity and good linearity in a magnetic field of 3-16 Oe. A 400 MHz RF energy generated from the interdigital transducer (IDT)-type reflector on the one-port SAW delay line was used as an activation source for the GMI magnetic sensor. The one-port SAW delay line replaces the presently existing transceiver system, which is composed of thousands of transistors, thus enabling chipless and wireless operation. We confirmed a large variation in the amplitude of the SAW reflection peak with a change in the impedance of the GMI sensor caused by the current flow through the conductor. Good linearity and sensitivity of ~0.691 dB/A were observed for currents in the range 1-12 A. Coupling of Mode (COM) modeling and impedance matching analysis were also performed to predict the device performance in advance and these were compared with the experimental results.

7.
Sensors (Basel) ; 14(11): 21660-75, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25407905

ABSTRACT

A Love wave-based biosensor with a 440 MHz center frequency was developed for the simultaneous detection of two different analytes of Cartilage Oligomeric Matrix Protein (COMP) and rabbit immunoglobulin G (IgG) in a single sensor. The developed biosensor consists of one-port surface acoustic wave (SAW) reflective delay lines on a 41° YX LiNbO3 piezoelectric substrate, a poly(methyl methacrylate) (PMMA) waveguide layer, and two different sensitive films. The Love wave biosensor was wirelessly characterized using two antennas and a network analyzer. The binding of the analytes to the sensitive layers induced a large change in the time positions of the original reflection peaks mainly due to the mass loading effect. The assessed time shifts in the reflection peaks were matched well with the predicted values from coupling of mode (COM) modeling. The sensitivities evaluated from the sensitive films were ~15 deg/µg/mL for the rabbit IgG and ~1.8 deg/ng/mL for COMP.


Subject(s)
Acoustics/instrumentation , Biopolymers/analysis , Biosensing Techniques/instrumentation , Complex Mixtures/analysis , Micro-Electrical-Mechanical Systems/instrumentation , Transducers , Wireless Technology/instrumentation , Animals , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Miniaturization , Rabbits , Sound
8.
Nanoscale ; 5(17): 8202-9, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23831941

ABSTRACT

We present hybrid solar cells with high efficiency utilizing a novel donor-acceptor combination of poly[2,6-(4,4'-bis-(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-alt-4,7(2,1,3-benzothiadiazole)] (PSBTBT) and a PbSxSe1-x inorganic semiconductor. Several nanocomposite parameters are evaluated in order to improve the hybrid device efficiency, including donor-acceptor materials, surface modification of the inorganic semiconductor, and mixture of quantum dots (QDs) and nanorods (NRs) in the polymer matrix. A high power conversion efficiency (PCE) of ~3.4% is attained from the optimal device with a PbS0.7Se0.3 QD : NR blending ratio of 0.3 : 0.7 (wt/wt) under air mass (AM) 1.5 solar illumination, which is attributed to the broad-range absorption of the solar energies and the efficient charge separation and transport dynamics. The optoelectronic and nanomorphological properties of these novel hybrid solar cells are described.


Subject(s)
Nanotubes/chemistry , Quantum Dots/chemistry , Solar Energy , Absorption , Photons , Polymers/chemistry , Semiconductors
9.
Biosens Bioelectron ; 20(2): 404-7, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15308247

ABSTRACT

Poly-benzocyclobutene (BCB)-based intracortical neural implant was fabricated, in which micro-fluidic channel was embedded to deliver drug solutions. BCB presents several attractive features for chronic applications: flexibility, biocompatibility, desirable chemical and electrical properties, and can be easily manufactured using existing batch micro-fabrication technology. The fabricated implants have single shank with three recording sites (20 microm x 20 microm) and two reserviors (inlet and outlet). The channel had large volume (40 microm width and 10 microm height), and hydrophobic surface to provide a high degree of chemical inertness. All the recording sites were positioned near the end of the shank in order to increase the probability of recording neural signals from a target volume of tissue. In vitro cytotoxicity tests of prototype implants revealed no adverse toxic effects on cultured cells. The implant with a silicon backbone layer of 5-10 microm was robust enough to penetrate rat's pia without buckling, a major drawback of polymer alone. The averaged impedance value at 1 KHz was approximately 1.2 MOmega. Simultaneous recordings of neural signals from barrel cortex of a rat were successfully demonstrated.


Subject(s)
Action Potentials/physiology , Biocompatible Materials/chemistry , Drug Implants/chemistry , Electric Stimulation/instrumentation , Electrodes, Implanted , Microelectrodes , Microfluidic Analytical Techniques/instrumentation , 3T3 Cells , Animals , Biocompatible Materials/adverse effects , Cerebral Cortex/physiology , Drug Implants/adverse effects , Electric Stimulation/methods , Equipment Design , Equipment Failure Analysis , Foreign-Body Reaction/etiology , Foreign-Body Reaction/pathology , Materials Testing , Mice , Microfluidic Analytical Techniques/methods , Neurons/physiology
10.
J Neurosci Methods ; 137(2): 257-63, 2004 Aug 30.
Article in English | MEDLINE | ID: mdl-15262069

ABSTRACT

Failure of neural recording electrodes implanted in the brain is often attributed to the formation of glial scars around the implant. A leading cause of scar formation is the electrode material. Described below is an approach to evaluate the biocompatibility of novel electrode materials in a representative three-dimensional model. The model, brain slice culture, accounts for the response of the neural tissue in the absence of the systemic response. While limitations of any in vitro model exist, brain slice culture provides an indication of the response of neurons and glia in an environment more indicative of the in vivo environment than two-dimensional cell culture of glia or neurons alone. Polybenzylcyclobutene (BCB) electrodes were developed as test materials for flexible electrodes due to ease of processing, low water uptake, and inherent flexibility when formed in thin sheets. Biocompatibilty of the BCB neural electrodes was evaluated using living brain slices derived from the hippocampal regions of 100 g CD rats. Importantly, fewer animals can be used in brain slice culture to evaluate the neural tissue response than when using live animals, since several slices can be obtained per animal. Cellular response to the electrodes was evaluated at 0, 7, and 14 days. At all time points living cells, both neurons and glia, were observed in the vicinity of the electrode. In addition, cells were observed migrating out from the brain slices onto the shank of the BCB electrode. Brain slice culture is shown to be a viable alternative to in vivo evaluation, in that the response of both neurons and glia can be evaluated in a native three-dimensional state, while sacrificing fewer animals. Future in vivo evaluation with BCB will provide definitive answers on the degree of glial scarring in response to this new and biocompatible electrode material.


Subject(s)
Biocompatible Materials , Electrophysiology/methods , Microelectrodes , Animals , Brain/cytology , Cell Death/physiology , Electrophysiology/instrumentation , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry/methods , Indicators and Reagents , Indoles/metabolism , Materials Testing , Microscopy, Confocal , Neurofilament Proteins/metabolism , Neurons/physiology , Organ Culture Techniques , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...