Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Biol Res ; 47: 50, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25299961

ABSTRACT

BACKGROUND: Accumulating evidence indicates that reactive oxygen species (ROS) are an important etiological factor for the induction of dermal papilla cell senescence and hair loss, which is also known alopecia. Arctiin is an active lignin isolated from Arctium lappa and has anti-inflammation, anti-microbial, and anti-carcinogenic effects. In the present study, we found that arctiin exerts anti-oxidative effects on human hair dermal papilla cells (HHDPCs). RESULTS: To better understand the mechanism, we analyzed the level of hydrogen peroxide (H2O2)-induced cytotoxicity, cell death, ROS production and senescence after arctiin pretreatment of HHDPCs. The results showed that arctiin pretreatment significantly inhibited the H2O2-induced reduction in cell viability. Moreover, H2O2-induced sub-G1 phase accumulation and G2 cell cycle arrest were also downregulated by arctiin pretreatment. Interestingly, the increase in intracellular ROS mediated by H2O2 was drastically decreased in HHDPCs cultured in the presence of arctiin. This effect was confirmed by senescence associated-beta galactosidase (SA-ß-gal) assay results; we found that arctiin pretreatment impaired H2O2-induced senescence in HHDPCs. Using microRNA (miRNA) microarray and bioinformatic analysis, we showed that this anti-oxidative effect of arctiin in HHDPCs was related with mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. CONCLUSIONS: Taken together, our data suggest that arctiin has a protective effect on ROS-induced cell dysfunction in HHDPCs and may therefore be useful for alopecia prevention and treatment strategies.


Subject(s)
Aging/metabolism , Furans/pharmacology , Glucosides/pharmacology , Hair Follicle/drug effects , MicroRNAs/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Aging/drug effects , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Dermis/cytology , Dermis/drug effects , Dermis/metabolism , Down-Regulation/drug effects , Hair Follicle/cytology , Hair Follicle/metabolism , Humans , Hydrogen Peroxide/pharmacology , MicroRNAs/drug effects , Oligonucleotide Array Sequence Analysis , Up-Regulation/drug effects , beta-Galactosidase/analysis
2.
Biol. Res ; 47: 1-11, 2014. graf, tab
Article in English | LILACS | ID: biblio-950746

ABSTRACT

BACKGROUND: Accumulating evidence indicates that reactive oxygen species (ROS) are an important etiological factor for the induction of dermal papilla cell senescence and hair loss, which is also known alopecia. Arctiin is an active lignin isolated from Arctium lappa and has anti-inflammation, anti-microbial, and anti-carcinogenic effects. In the present study, we found that arctiin exerts anti-oxidative effects on human hair dermal papilla cells (HHDPCs). RESULTS: To better understand the mechanism, we analyzed the level of hydrogen peroxide (H2O2)-induced cytotoxicity, cell death, ROS production and senescence after arctiin pretreatment of HHDPCs. The results showed that arctiin pretreatment significantly inhibited the H2O2-induced reduction in cell viability. Moreover, H2O2-induced sub-G1 phase accumulation and G2 cell cycle arrest were also downregulated by arctiin pretreatment. Interestingly, the increase in intracellular ROS mediated by H2O2 was drastically decreased in HHDPCs cultured in the presence of arctiin. This effect was confirmed by senescence associated-beta galactosidase (SA-ß-gal) assay results; we found that arctiin pretreatment impaired H2O2-induced senescence in HHDPCs. Using microRNA (miRNA) microarray and bioinformatic analysis, we showed that this anti-oxidative effect of arctiin in HHDPCs was related with mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. CONCLUSIONS: Taken together, our data suggest that arctiin has a protective effect on ROS-induced cell dysfunction in HHDPCs and may therefore be useful for alopecia prevention and treatment strategies.


Subject(s)
Humans , Aging/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Hair Follicle/drug effects , MicroRNAs/metabolism , Furans/pharmacology , Glucosides/pharmacology , Aging/drug effects , Down-Regulation/drug effects , Up-Regulation/drug effects , Cell Line , Cell Survival/drug effects , Cell Death/drug effects , beta-Galactosidase/analysis , Hair Follicle/cytology , Hair Follicle/metabolism , Dermis/cytology , Dermis/drug effects , Dermis/metabolism , Oligonucleotide Array Sequence Analysis , MicroRNAs/drug effects , Cell Cycle Checkpoints/drug effects , Hydrogen Peroxide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL