Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Article in English | MEDLINE | ID: mdl-38564169

ABSTRACT

To explore the potential of probiotic candidates beneficial for honeybee health through the modulation of the gut microbiome, bee gut microbes were isolated from bumblebee (Bombus terrestris) and honeybee (Apis mellifera) using diverse media and cultural conditions. A total of 77 bee gut bacteria, classified under the phyla Proteobacteria, Firmicutes, and Actinobacteria, were identified. The antagonistic activity of the isolates against Ascosphaera apis, a fungal pathogen responsible for chalkbrood disease in honeybee larvae, was investigated. The highest growth inhibition percentage against A. apis was demonstrated by Bacillus subtilis strain I3 among the bacterial strains. The presence of antimicrobial peptide genes in the I3 strain was detected using PCR amplification of gene fragments encoding surfactin and fengycin utilizing specific primers. The export of antimicrobial peptides by the I3 strain into growth medium was verified using liquid chromatography coupled with mass spectroscopy. Furthermore, the strain's capabilities for degrading pesticides, used for controlling varroa mites, and its spent growth medium antioxidant activity were substantiated. The survival rate of honeybees infected with (A) apis was investigated after feeding larvae with only medium (fructose + glucose + yeast extract + royal jelly), (B) subtilis I3 strain, A. apis with medium and I3 strain + A. apis with medium. Honeybees receiving the I3 strain + A. apis exhibited a 50% reduction in mortality rate due to I3 strain supplementation under experimental conditions, compared to the control group. In silico molecular docking revealed that fengycin hydrolase from I3 strain effectively interacted with tau-fluvalinate, suggesting its potential in bee health and environmental protection. Further studies are needed to confirm the effects of the I3 strain in different populations of honey bees across several regions to account for genetic and environmental variations.

2.
Antioxidants (Basel) ; 13(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38671917

ABSTRACT

Bee venom contains several bioactive components, including enzymatic and non-enzymatic proteins. There is increasing interest in the bioactive components of bee venom since they have exhibited various pharmacological effects. Recently, Apis mellifera waprin (Amwaprin) was identified as a novel protein in Apis mellifera (honeybee) venom and characterized as an antimicrobial agent. Herein, the novel biological function of Amwaprin as an antioxidant is described. In addition, the antioxidant effects of Amwaprin in mammalian cells were investigated. Amwaprin inhibited the growth of, oxidative stress-induced cytotoxicity, and inflammatory response in mammalian NIH-3T3 cells. Amwaprin decreased caspase-3 activity during oxidative stress and exhibited protective activity against oxidative stress-induced cell apoptosis in NIH-3T3 and insect Sf9 cells. The mechanism underlying the cell protective effect of Amwaprin against oxidative stress is due to its direct binding to the cell membrane. Furthermore, Amwaprin demonstrated radical-scavenging activity and protected against oxidative DNA damage. These results suggest that the antioxidant capacity of Amwaprin is attributed to the synergistic effects of its radical-scavenging action and cell shielding, indicating its novel role as an antioxidant agent.

3.
PLoS One ; 18(11): e0290848, 2023.
Article in English | MEDLINE | ID: mdl-37963166

ABSTRACT

Bumblebees are crucial for both natural ecosystems and agriculture, but their decline in distribution and abundance over the past decade is alarming. The global importance of bumblebees in natural ecosystems and agricultural food production cannot be overstated. However, the reported decline over the past decade has led to a surge of interest in understanding and addressing bumblebee population decline. Hence, we aimed to detect disruptions in the gut microbiome of male and worker bumblebees reared indoor and outdoor to assess potential resilience to environmental stress. Using the Illumina MiSeq platform for 16s rRNA amplicon sequencing, we analyzed the gut microbiome of male and worker bees that were raised indoors (designated as the IM and IW group) and those that were raised outdoors (also designated as the OM and OW group). Our results show presence of core bacteria Neisseriaceae, Orbaceae, Lactobacillaceae and Bifidobacteriaceae from indoor reared worker bees. However, a higher abundance of Bifidobacterium and absence of Fructobacillus from indoor reared worker bees was also observed. Indoor-reared male bees had lower diversity and fewer observed OTUs compared to outdoor-reared male bees. Additionally, the relative abundance of Actinobacteriota, Bacteroidota, and Firmicutes was significantly lower in indoor-reared males, while Proteobacteria was significantly increased. Despite this, we did not observe any dysbiosis in the gut microbiota of indoor-reared bumblebees when comparing the role of the gut symbionts among the groups. These results suggest that indoor-reared Bombus terrestris may be resilient to environmental stress when used as outdoor pollinators.


Subject(s)
Gastrointestinal Microbiome , Male , Bees/genetics , Animals , Gastrointestinal Microbiome/genetics , Ecosystem , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Firmicutes/genetics
4.
Environ Res ; 228: 115873, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37062482

ABSTRACT

Nitrate sources in surface water have been identified using dual-isotope compositions of nitrate with various tools to efficiently manage the water quality at the local scale. Correlation between Cl and NO3 has also been used to identify NO3. In this study, we assess the reliability of the dual-isotope approach and Cl in terms of nitrate source apportionment. To this end, we collected stream water samples throughout South Korea to estimate nitrate sources in streams and determine whether the land-use pattern was closely related to nitrate sources. The δ15N-NO3 ranging from -1.3 to 14.8‰ showed a spatial distribution that was lower in mountain ranges (<7‰) than plain areas (>8‰). The Cl concentration in this national-scale distribution was also assessed. The relationship between the proportion of Cl and δ15N-NO3 classifies nitrate sources into areas characterized by three land-use patterns: (1) agricultural and business areas, (2) forests in highlands, and (3) lowland forests, of which (1) had proportions of Cl >50%, while (2) and (3) were <50%. The samples in (3) showed δ15N-NO3 values > 6‰, similar to those of (1). Deuterium excess of samples was negatively correlated (R2 = 0.53) with δ15N-NO3, accounting for the fact that δ15N-NO3 reflected land-use patterns. Samples were dominantly affected by agriculture-derived sources and domestic sewage showed NO3/Cl of <0.4 and δ15N-NO3 of >6‰. These results suggest that nitrate source apportionment should be comprehensively evaluated considering the dual-isotope approach, land-use patterns, and Cl proportions.


Subject(s)
Groundwater , Water Pollutants, Chemical , Nitrates/analysis , Rivers , Nitrogen Isotopes/analysis , Chlorides , Water Pollutants, Chemical/analysis , Reproducibility of Results , Environmental Monitoring/methods , China
5.
Dev Comp Immunol ; 144: 104709, 2023 07.
Article in English | MEDLINE | ID: mdl-37031709

ABSTRACT

Honeybee diseases are a serious threat to beekeeping and pollination. Transgenerational immune priming (TGIP) has been attracting increasing attention as a promising strategy to protect honeybee colonies from infections. This study investigated whether feeding honeybees (Apis mellifera) with a heat-killed pathogen cocktail can provide them with transgenerational immunity to these pathogens. We found that vitellogenin (Vg) and defensin-1 were highly upregulated in nurse bees upon feeding them with a cocktail of heat-killed Ascosphaera apis and Paenibacillus larvae (A + P cocktail). Pathogen-pattern-recognition receptor genes in the Toll signaling pathway were upregulated in nurse bees upon ingestion of the A + P cocktail. In the nurse bees of the hives supplied with the A + P cocktail, Vg was upregulated in the fat body, and the defensin-1 expression and Vg uptake in the hypopharyngeal glands were induced. Consequently, the major proteins in royal jelly were upregulated. In addition, defensin-1 was upregulated in the queen larvae and young worker larvae in these hives. In correlation, the young worker larvae showed high pathogen resistance to P. larvae infection. Thus, our findings imply that introduction of a heat-killed pathogen cocktail into hives is an efficient strategy for conferring honeybees with social immunity through TGIP.


Subject(s)
Hot Temperature , Vitellogenins , Bees , Animals , Vitellogenins/genetics , Vitellogenins/metabolism , Larva/metabolism , Defensins , Eating
6.
Sci Total Environ ; 880: 163353, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37023824

ABSTRACT

Both the smelter and acid mine drainage (AMD) in uppermost streams impact water geochemistry and deteriorate water quality. Efficient water quality management requires identifying the contribution of each source to stream water geochemistry. In this study, we aimed to determine the natural and anthropogenic sources (AMD and smelting) affecting water geochemistry by considering seasonality. Water samples were collected, from May 2020 to April 2021, in a main channel (Nakdong River) and tributaries in a small watershed including mines and smelters. The watershed is characterized by a carbonate-rich area in the upper-middle reaches and silicate-rich area in the middle-lower reaches. On the plots of Ca/Na vs. Mg/Na and 2(Ca + Mg) vs. HCO3 + 2SO4, the water geochemistry was predominantly explained by the carbonate and silicate weathering associated with sulfuric and carbonic acids. According to typical δ15N values for sources, nitrate contribution from soil-N mainly impacted water geochemistry, regardless of seasonality; the contribution from agricultural activity and sewage was negligible. Water geochemistry in the main channel samples was discriminated before and after passing through the smelter. The effects of the smelter were evident in elevated SO4, Zn, and Tl concentrations and in δ66Zn values; this was further supported by the relationships between Cl/HCO3 and SO4/HCO3 and between δ66Zn and Zn. These results were pronounced during winter, when the flush-out effect was absent. Our results suggest that multi-isotopes and chemical composition analyses can trace multiple sources influencing the water geochemistry in watersheds containing AMD and smelters.

7.
Article in English | MEDLINE | ID: mdl-36738900

ABSTRACT

Bee venom is a rich source of biologically and pharmacologically active proteins. Waprin is a protein component of venoms; however, waprin has yet to be identified in bee venom. Moreover, the biological functions of waprin in venoms remain poorly characterized. Thus, in this study, we have identified and characterized waprin: a novel protein component from the venom of honeybees (Apis mellifera). The waprin in A. mellifera venom (Amwaprin) was found to consist of an 80-amino acid mature peptide, in which the whey acidic protein domain contains four conserved disulfide bonds. We discovered the presence of the Amwaprin protein in secreted venom by using an antibody against recombinant Amwaprin produced in baculovirus-infected insect cells. Recombinant Amwaprin exhibited inhibitory activity against microbial serine proteases and elastases but not thrombin or plasmin. It recognized carbohydrates in the microbial cell wall molecules and bound to the live microbial surfaces. The binding action of Amwaprin produced its microbicidal activity by inducing structural damage to bacterial and fungal cell walls. In addition, recombinant Amwaprin is heat-stable and contains no hemolytic activity. These findings demonstrate that Amwaprin acts as a microbicidal and anti-elastolytic agent.


Subject(s)
Anti-Infective Agents , Bee Venoms , Insect Proteins , Animals , Bee Venoms/pharmacology , Bees , Insect Proteins/pharmacology , Anti-Infective Agents/pharmacology
8.
Chemosphere ; 317: 137895, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36657573

ABSTRACT

Successful application and accurate interpretation of strontium (Sr) isotope ratios (87Sr/86Sr) requires underlying information about the large-scale variabilities in their signatures from a variety of environmental samples, which can be correlated with the Sr isotopic signatures of underlying local geology. In this national-scale study, we analyzed 87Sr/86Sr in soil, plants, stream water, and Chinese mystery snail (Cipangopaludina chinensis) shells collected from South Korea to evaluate large-scale spatial variabilities, interpret relationships among isotopic signatures of various sample types, and generate spatial distribution isoscapes reflecting the heterogeneity of isotopic signatures across South Korea. Non-parametric comparisons among environmental samples showed non-significant differences in their isotopic ratios. The 87Sr/86Sr of plant and soil samples were strongly correlated (R2adj = 0.93), suggesting that both reflect national-scale lithological properties. Similarly, the 87Sr/86Sr of shells showed strong correlations with the 87Sr/86Sr of both plant and soil samples (R2adj = 0.90). The 87Sr/86Sr signatures of environmental samples in this study aligned with expected Sr isotopic values and generally reflected local geology. Spatial distribution maps of samples showed similar 87Sr/86Sr spatial patterns, with high radiogenic values from granitic and granitic gneiss rocks systems and low radiogenic values from volcanic and sedimentary rock systems. Stream water samples showed significant correlations with soil and plant isotopic ratios, but with a low coefficient of determination (R2adj = 0.68). The deviations were much larger for samples with 87Sr/86Sr > 0.720. Further study is needed to improve the accuracy of baseline determination and interpretation of stream water isotopic variations.


Subject(s)
Soil , Strontium Isotopes , Strontium Isotopes/analysis , Water , Republic of Korea , Rivers , Strontium
9.
Environ Geochem Health ; 45(5): 2349-2358, 2023 May.
Article in English | MEDLINE | ID: mdl-35960422

ABSTRACT

Trace element concentrations and isotope ratios of hair reflect the blood levels at the time of hair formation, but can be affected by external factors such as dyeing, bleaching, and bathing. To investigate the effect of dyeing, bleaching, and bathing on hair, hair was immersed in tap water, and changes in trace element concentrations and the Sr isotope ratio were observed over time. During soaking, alkaline earth metals (Ca, Mg, and Sr) from tap water were gradually absorbed into the hair over time. After about one day, the adsorption capacity of hair reached a maximum and the reverse reaction started to occur. In contrast, alkaline metals (Na and K) behaved in reverse. In dyed and bleached hair, Na was significantly desorbed from the hair and gradually migrated to the water over time. The adsorption and desorption of trace elements were minimal in untreated original hair, but much higher in dyed and bleached hair. Thus, dyeing and bleaching appear to damage the hair surface structure and greatly promote the exchange of trace elements. The rapid exchange of trace elements, including Sr, between hair and tap water observed in this study indicates that hair samples can be easily contaminated during bathing.


Subject(s)
Trace Elements , Humans , Trace Elements/analysis , Coloring Agents , Metals/analysis , Hair/chemistry , Water/analysis , Sodium/analysis
10.
ACS Omega ; 7(46): 41859-41871, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36440155

ABSTRACT

The natural organic matter (NOM) properties in water from cold and hot mineral springs in South Korea are not well documented. We analyzed the characteristics of NOM in water from 25 cold and hot mineral springs located across South Korea. The NOM of each sample was concentrated using solid-phase extraction and analyzed using 15T Fourier-transform ion cyclotron resonance mass spectrometry. The origin of NOM was identified using van Krevelen diagrams. This study suggests that an analytical method to evaluate the characteristics of water in each region of South Korea can be established and used as a baseline for further research.

11.
Article in English | MEDLINE | ID: mdl-36193131

ABSTRACT

Osteoporosis is a common disease that increases the risk of fractures due to decreased bone density and weakens the bone microstructure. Preventing and diagnosing osteoporosis using the available drugs can be a costly affair with possible side effects. Therefore, natural product-derived therapeutics are promising alternatives. Our study demonstrated that the oat seedlings' extract (OSE) inhibited the receptor activator of the nuclear factor κB ligand (RANKL)-induced osteoclastogenesis from the bone marrow-derived macrophages (BMMs). The OSE treatment significantly attenuated the RANKL-mediated induction of the tartrate-resistant acid phosphatase (TRAP) activity as well as the number of TRAP-positive (TRAP+) multinucleated cells (MNCs) counted through the TRAP staining in a dose-dependent manner. It was also confirmed that the OSE suppressed the formation of the TRAP + MNCs in the early stage of differentiation and not in the middle and late stages. The results of the real-time quantitative polymerase chain reaction (qPCR) and the western blotting showed that the OSE dramatically inhibited the mRNA and protein expressions of the osteoclastogenesis-mediated transcription factors such as the c-Fos and the nuclear factor-activated T cells c1 (NFATc1). In addition, the OSE strongly attenuated the mRNA induction of the c-Fos/NFATc1-dependent molecules such as the TRAP, the osteoclast-associatedimmunoglobulin-like receptor (OSCAR), the dendritic cell-specific transmembrane protein (DC-STAMP), and the cathepsin K. These results suggest that the naturally derived OSE may be useful for preventing bone diseases.

12.
Insects ; 13(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36292906

ABSTRACT

Apidermins (APDs) are known as structural cuticular proteins in insects, but their additional roles are poorly understood. In this study, we characterized the honeybee, Apis mellifera, APD 2 (AmAPD 2), which displays activity suggesting antimicrobial properties. In A. mellifera worker bees, the AmAPD 2 gene is transcribed in the epidermis, hypopharyngeal glands, and fat body, and induced upon microbial ingestion. Particularly in the epidermis of A. mellifera worker bees, the AmAPD 2 gene showed high expression and responded strongly to microbial challenge. Using a recombinant AmAPD 2 peptide, which was produced in baculovirus-infected insect cells, we showed that AmAPD 2 is heat-stable and binds to live bacteria and fungi as well as carbohydrates of microbial cell wall molecules. This binding action ultimately induced structural damage to microbial cell walls, which resulted in microbicidal activity. These findings demonstrate the antimicrobial role of AmAPD 2 in honeybees.

13.
Toxins (Basel) ; 14(8)2022 08 17.
Article in English | MEDLINE | ID: mdl-36006220

ABSTRACT

Venoms from venomous arthropods, including bees, typically induce an immediate local inflammatory response; however, how venoms acutely elicit inflammatory response and which components induce an inflammatory response remain unknown. Moreover, the presence of superoxide dismutase (SOD3) in venom and its functional link to the acute inflammatory response has not been determined to date. Here, we confirmed that SOD3 in bee venom (bvSOD3) acts as an inducer of H2O2 production to promote acute inflammatory responses. In mouse models, exogenous bvSOD3 rapidly induced H2O2 overproduction through superoxides that are endogenously produced by melittin and phospholipase A2, which then upregulated caspase-1 activation and proinflammatory molecule secretion and promoted an acute inflammatory response. We also showed that the relatively severe noxious effect of bvSOD3 elevated a type 2 immune response and bvSOD3 immunization protected against venom-induced inflammation. Our findings provide a novel view of the mechanism underlying bee venom-induced acute inflammation and offer a new approach to therapeutic treatments for bee envenoming and bee venom preparations for venom therapy/immunotherapy.


Subject(s)
Bee Venoms , Animals , Bee Venoms/pharmacology , Bees , Hydrogen Peroxide , Inflammation/chemically induced , Melitten/pharmacology , Mice , Superoxide Dismutase
14.
Genomics ; 114(4): 110432, 2022 07.
Article in English | MEDLINE | ID: mdl-35843383

ABSTRACT

Soyasaponin is a type of glycoside such as steroids, steroidal alkaloids or triterpenes, which enhance the body immunity. In order to efficiently identify genes and markers related to the soyasaponin, we used a 180K Axiom® SoyaSNP array and whole genome resequencing data from the Korean soybean core collection. As a result of conducting GWAS for group A soyasaponin (Aa and Ab derivatives), 16 significant common markers associated with Aa and Ab derivatives were mapped to chromosome 7, and three candidate genes including Glyma.07g254600 were detected. The functional haplotypes for candidate genes showed that Aa and Ab contents were mainly determined by alleles of AX-90322128, the marker of Glyma.07g254600. In addition, 14 novel SNPs variants closely associated with Aa and Ab derivatives were discovered for Glyma.07g254600. Therefore, the results of this study that identified soyasaponin-associated markers and useful genes utilizing various genomic information could provide insight into functional soybean breeding.


Subject(s)
Glycine max , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods , Plant Breeding , Quantitative Trait Loci , Glycine max/genetics
15.
Dev Comp Immunol ; 135: 104478, 2022 10.
Article in English | MEDLINE | ID: mdl-35716829

ABSTRACT

In bee venoms, low-molecular-weight peptides, including serine protease inhibitors (SPIs), exhibit multifunctional activities. Although SPIs in bee venoms are relatively well known, those that function in both the body and secreted venom of bees are not well-characterized. In this study, we identified a bumblebee (Bombus ignitus) SPI (BiSPI) that displays microbicidal and anti-fibrinolytic activities. BiSPI was found to consist of a trypsin inhibitor-like domain containing a P1 site and ten cysteine residues. We observed that the BiSPI gene was ubiquitously transcribed in the body, including the venom glands. In correlation, the BiSPI protein was detected both in the body and secreted venom by using an antibody against a recombinant BiSPI peptide produced in baculovirus-infected insect cells. Recombinant BiSPI exhibited inhibitory activity against trypsin but not chymotrypsin and inhibited microbial serine proteases and plasmin but not elastase or thrombin. Moreover, recombinant BiSPI recognized carbohydrates and bound to fungi and gram-negative and gram-positive bacteria. Consistent with these properties, recombinant BiSPI exhibited microbicidal activities against bacteria and fungi through induction of structural damage by binding to the microbial surfaces. Additionally, recombinant BiSPI inhibited the plasmin-mediated degradation of human fibrin and was thus concluded to exhibit anti-fibrinolytic activity. Moreover, the peptide showed no effect on hemolysis. These findings demonstrate the dual function of BiSPI, which acts as a microbicidal peptide and anti-fibrinolytic venom toxin.


Subject(s)
Anti-Infective Agents , Bee Venoms , Serpins , Animals , Anti-Infective Agents/metabolism , Antivenins/genetics , Bee Venoms/metabolism , Bees/genetics , Cloning, Molecular , Fibrinolysin , Fungi , Humans , Pancreatic Elastase , Peptides/genetics , Recombinant Proteins/genetics , Serine Proteinase Inhibitors/genetics , Serpins/genetics
16.
Environ Monit Assess ; 194(7): 487, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35674833

ABSTRACT

The Nakdong River is the longest river in South Korea, and flows through various geological terrains with different land use characteristics; therefore, the geochemistry of its water is expected to be influenced by many factors. In this work, the geochemical characteristics of the Nakdong River were examined, and its chemical compositions, δD, δ18O, and δ13CDIC values, and 87Sr/86Sr ratios were determined to investigate the geological and anthropogenic effects on the geochemistry of the Nakdong River water. The obtained concentrations of major ions were strongly affected by both the anthropogenic activity and weathering of the rocks. With increasing the flow distance, the ion concentrations slightly increased; and after the inflow of the Kumho River, which was the largest tributary running through Daegu (the fourth largest city in South Korea), the concentrations of Na and SO4 ions abruptly increased and decreased again, suggesting the existence of strong anthropogenic effects caused by sewage treatment plants and dyeing industrial complex. Other activities such as agricultural ones also increased the NO3 concentration. In July, the high precipitation level from tropical cyclones and downpours decreased the ion concentrations as well as the δD and δ18O values. The δ13CDIC magnitudes showed that the dissolved inorganic carbon mainly originated from mineral weathering upstream, while the oxidation of soil organic materials influenced by agricultural activity became more important downstream. The 87Sr/86Sr ratios revealed that in the upstream regions, the weathering of granite and gneiss complex was dominant, while in the downstream regions, the weathering of sedimentary rocks became more important. The weathering and anthropogenic effects on the river water chemistry were also demonstrated using statistical analysis, which revealed that the water geochemistry was mostly influenced by the anthropogenic sources, including industrial complex, represented by Na, Cl, and SO4. The obtained results show that, as compared to the geochemistry of the Han River (which is also a major river in Korea), the geochemistry of the Nakdong River is more influenced by anthropogenic activities (including agriculture and the industrial complex) due to the different land use.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Anthropogenic Effects , Rivers/chemistry , Water/analysis , Water Pollutants, Chemical/analysis
17.
Insects ; 13(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35447776

ABSTRACT

Honeybee vitellogenin (Vg) transports pathogen fragments from the gut to the hypopharyngeal glands and is also used by nurse bees to synthesize royal jelly (RJ), which serves as a vehicle for transferring pathogen fragments to the queen and young larvae. The proteomic profile of RJ from bacterial-challenged and control colonies was compared using mass spectrometry; however, the expression changes of major royal jelly proteins (MRJPs) in hypopharyngeal glands of the honeybee Apis mellifera in response to bacterial ingestion is not well-characterized. In this study, we investigated the expression patterns of Vg in the fat body and MRJPs 1-7 in the hypopharyngeal glands of nurse bees after feeding them live or heat-killed Paenibacillus larvae. The expression levels of MRJPs and defensin-1 in the hypopharyngeal glands were upregulated along with Vg in the fat body of nurse bees fed with live or heat-killed P. larvae over 12 h or 24 h. We observed that the expression patterns of MRJPs and defensin-1 in the hypopharyngeal glands and Vg in the fat body of nurse bees upon bacterial ingestion were differentially expressed depending on the bacterial status and the time since bacterial ingestion. In addition, the AMP genes had increased expression in young larvae fed heat-killed P. larvae. Thus, our findings indicate that bacterial ingestion upregulates the transcriptional expression of MRJPs in the hypopharyngeal glands as well as Vg in the fat body of A. mellifera nurse bees.

18.
Sci Total Environ ; 806(Pt 3): 151352, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34728202

ABSTRACT

Natural variations of 87Sr/86Sr ratios in biological samples, such as human hair, provide a biological record of provenance. Spatial distribution maps reflecting heterogeneity in isotopic signatures across large geographical regions are helpful for discerning the provenance and mobility of organisms. In this national-scale study conducted across South Korea, we investigated the spatial distribution patterns of 87Sr/86Sr ratios in human hair and tap water samples to determine their spatial variabilities and the relationships of isotopic signatures between hair and tap water. The strontium isoscapes of tap water and hair showed similar spatial distribution patterns. Non-parametric comparison indicated no significant differences in isotopic ratios between the two sample types. The 87Sr/86Sr ratios in human hair showed a significant and strong correlation with the ratios in tap water in eastern Korea, suggesting potential use of 87Sr/86Sr ratios in provenance studies. However, tap water and hair samples from western Korea did not show significant correlation between them, overall reducing the predictive power of the hair 87Sr/86Sr ratios for provenance studies. The deviation between 87Sr/86Srtap water and 87Sr/86Srhair was much larger in western coastal areas than in eastern Korea. Relatively high utilization of groundwater or exogenous materials, such as Asian dust, may have been responsible for this pattern. To fully utilize the potential of the strontium isotope signature as a biorecorder in provenance studies, it is essential to evaluate the effects of groundwater and other exogenous materials on the isotope signatures of hair and other biological samples. In this study, only hair samples from males were used to develop 87Sr/86Sr isoscapes. Therefore, further studies are required to examine the applicability of 87Sr/86Sr hair isoscapes based solely on human hair samples from males to forensic and provenance studies of human hair samples from females.


Subject(s)
Strontium Isotopes , Water , Female , Hair , Humans , Isotopes , Male , Strontium
19.
Sci Total Environ ; 812: 151428, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34742991

ABSTRACT

This study presents the spatial distributions of stable isotopes for groundwater according to well depth and spring water across South Korea, using an interpolation model to provide baseline information for hydrological studies. In total, 888 groundwater and 108 spring water samples were collected across South Korea; their oxygen and hydrogen isotopic compositions (δ18O and δ2H) were analyzed. δ18O and δ2H values biased toward the summer local meteoric water line and low d-excess values indicate that summer precipitation is important for groundwater recharge. The δ18O and δ2H values for groundwater and spring water decrease progressively from the southwest to the northeast on the Korean Peninsula. Based on eight hydrological regions, the average δ18O values of groundwater and spring water are negatively correlated with latitude, but they are positively correlated with temperature. This result indicates that the spatial distributions of groundwater isotopic values in South Korea are significantly influenced by latitude and altitude effects associated with the movement of the North Pacific air mass in summer. Spring waters showed a negative correlation between δ18O and d-excess, with more depleted 18O values than groundwater, indicating that local recharge and flow within mountainous areas is dominant. Considering that the correlation in multi-level groundwater located in northern regions is similar to that of spring water, the contribution of regional groundwater flow, which is recharged in mountainous areas, is considered to be higher in the northern regions. The spatial distribution of δ18O in groundwater gradually approached the spatial distribution of spring water with increasing well depth, indicating that the contribution of regional groundwater flow may be greater in deep groundwater. Our results provide estimates for data-poor regions, supporting the investigation of links between groundwater and other hydrological factors.


Subject(s)
Groundwater , Hydrogen , Environmental Monitoring , Hydrogen/analysis , Oxygen , Oxygen Isotopes/analysis , Republic of Korea
20.
PLoS One ; 16(8): e0256404, 2021.
Article in English | MEDLINE | ID: mdl-34415968

ABSTRACT

Dietary homogenization has progressed worldwide due to westernization and the globalization of food production systems. We investigated dietary heterogeneity in South Korea by examining the spatial distribution of carbon (C), nitrogen (N), and sulfur (S) isotope ratios using 264 human hair samples. Overall, variation in isotope values was small, indicating low dietary heterogeneity. We detected differences in δ13C, δ15N, and δ34S values between administrative provinces and metropolitan cities; inter-regional differences were typically < 1 ‰. Values of δ34S were significantly lower in hair samples from inland regions relative to those from coastal locations, and a similar pattern was observed in δ15N values. Understanding geographic variation in δ34S and δ15N values in human hair is useful for provenancing humans in South Korea.


Subject(s)
Carbon Isotopes , Nitrogen Isotopes , Sulfur Isotopes , Humans , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL
...