Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119659, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38216089

ABSTRACT

The effects of EGCG on the selective death of cancer cells by modulating antioxidant pathways through autophagy were explored in various normal and cancer cells. EGCG positively regulated the p62-KEAP1-NRF2-HO-1 pathway in normal cells, while negatively regulating it in cancer cells, leading to selective apoptotic death of cancer cells. In EGCG-treated MRC5 cells (EGCG-MRC5), autophagic flux was blocked, which was accompanied by the formation of p62-positive aggregates. However, EGCG-treated HeLa cells (EGCG-HeLa) showed incomplete autophagic flux and no aggregate formation. The levels of P-ULK1 S556 and S758 increased in EGCG-MRC5 through AMPK-mTOR cooperative interaction. In contrast, EGCG treatment in HeLa cells led to AMPK-induced mTOR inactivation, resulting in abrogation of P-ULK1 S556 and S758 levels. AMPK knockout in EGCG-HeLa restored positive regulation of the p62-mediated pathway, which was accompanied by increased P-mTOR S2448 and P-ULK1 S758 levels. Knockdown of 67LR in EGCG-HeLa abolished AMPK activity but did not restore the p62-mediated pathway. Surprisingly, both AMPK knockout and 67LR knockdown in EGCG-HeLa markedly increased cell viability, despite differential regulation of the antioxidant enzyme HO-1. In conclusion, EGCG induces the selective death of cancer cells through the modulation of at least two autophagy-dependent and independent regulatory pathways: negative regulation involves the mTOR-ULK1 (S556 and S758)-p62-KEAP1-NRF2-HO-1 axis via AMPK activation, whereas positive regulation occurs through the 67LR-AMPK axis.


Subject(s)
Antioxidants , Neoplasms , Humans , Antioxidants/pharmacology , Kelch-Like ECH-Associated Protein 1 , AMP-Activated Protein Kinases/genetics , HeLa Cells , NF-E2-Related Factor 2/genetics , Autophagy , TOR Serine-Threonine Kinases/genetics , Neoplasms/drug therapy , Neoplasms/genetics
2.
J Enzyme Inhib Med Chem ; 39(1): 2290911, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38078371

ABSTRACT

Alterations in normal metabolic processes are defining features of cancer. Glutamine, an abundant amino acid in the human blood, plays a critical role in regulating several biosynthetic and bioenergetic pathways that support tumour growth. Glutaminolysis is a metabolic pathway that converts glutamine into various metabolites involved in the tricarboxylic acid (TCA) cycle and generates antioxidants that are vital for tumour cell survival. As glutaminase catalyses the initial step of this metabolic pathway, it is of great significance in cancer metabolism and tumour progression. Inhibition of glutaminase and targeting of glutaminolysis have emerged as promising strategies for cancer therapy. This review explores the role of glutaminases in cancer metabolism and discusses various glutaminase inhibitors developed as potential therapies for tumour regression.


Subject(s)
Glutamine , Neoplasms , Humans , Glutamine/metabolism , Glutaminase/metabolism , Neoplasms/drug therapy , Amino Acids
3.
Eur J Med Chem ; 265: 116052, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38134745

ABSTRACT

The bromodomain and extraterminal domain (BET) family proteins recognize acetyl-lysine (Kac) at the histone tail through two tandem bromodomains, i.e., BD1 and BD2, to regulate gene expression. BET proteins are attractive therapeutic targets in cancer due to their involvement in oncogenic transcriptional activation, and bromodomains have defined Kac-binding pockets. Here, we present DW-71177, a potent BET inhibitor that selectively interacts with BD1 and exhibits strong antileukemic activity. X-ray crystallography, isothermal titration calorimetry, and molecular dynamic studies have revealed the robust and specific binding of DW-71177 to the Kac-binding pocket of BD1. DW-71177 effectively inhibits oncogenes comparable to the pan-BET inhibitor OTX-015, but with a milder impact on housekeeping genes. It efficiently blocks cancer-associated transcriptional changes by targeting genes that are highly enriched with BRD4 and histone acetylation marks, suggesting that BD1-selective targeting could be an effective and safe therapeutic strategy against leukemia.


Subject(s)
Leukemia, Myeloid, Acute , Transcription Factors , Humans , Transcription Factors/metabolism , Histones , Nuclear Proteins , Quinoxalines/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Cell Cycle Proteins/metabolism , Bromodomain Containing Proteins
4.
Pathogens ; 12(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37887734

ABSTRACT

The non-pharmaceutical interventions implemented to prevent the spread of COVID-19 have affected the epidemiology of other respiratory viruses. In South Korea, Human metapneumovirus (HMPV) typically occurs from winter to the following spring; however, it was not detected for two years during the COVID-19 pandemic and re-emerged in the fall of 2022, which is a non-epidemic season. To examine the molecular genetic characteristics of HMPV before and after the COVID-19 pandemic, we analyzed 427 HMPV-positive samples collected in the Gwangju area from 2018 to 2022. Among these, 24 samples were subjected to whole-genome sequencing. Compared to the period before the COVID-19 pandemic, the incidence rate of HMPV in 2022 increased by 2.5-fold. Especially in the age group of 6-10 years, the incidence rate increased by more than 4.5-fold. In the phylogenetic analysis results, before the COVID-19 pandemic, the A2.2.2 lineage was predominant, while in 2022, the A2.2.1 and B2 lineage were observed. The non-pharmaceutical interventions implemented after COVID-19, such as social distancing, have reduced opportunities for exposure to HMPV, subsequently leading to decreased acquisition of immunity. As a result, HMPV occurred during non-epidemic seasons, influencing the age distribution of its occurrences.

5.
Int J Mol Sci ; 24(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37511160

ABSTRACT

Taq DNA polymerases have played an important role in molecular biology for several years and are frequently used for polymerase chain reaction (PCR); hence, there is an increasing interest in developing a convenient method for preparing Taq DNA polymerase for routine use in laboratories. We developed a method using Escherichia coli (E. coli) that expresses thermostable Taq DNA polymerase directly in the PCR without purification. The Taq gene was transformed into E. coli and expressed. After overnight incubation and washing, E. coli-expressing Taq DNA polymerase (EcoliTaq) was used as the DNA polymerase without purification. EcoliTaq showed activity comparable to that of commercial DNA polymerase and remained stable for 3 months. With a high-pH buffer containing 2% Tween 20 and 0.4 M trehalose, EcoliTaq facilitated direct PCR amplification from anticoagulated whole blood samples. EcoliTaq exhibited good performance in allele-specific PCR using both purified DNA and whole blood samples. Furthermore, it proved to be useful as a DNA polymerase in hot-start PCR by effectively minimizing non-specific amplification. We developed a simple and cost-effective direct and hot-start PCR method in which EcoliTaq was used directly as a PCR enzyme, thus eliminating the laborious and time-consuming steps of polymerase purification.


Subject(s)
DNA , Escherichia coli , Taq Polymerase , Escherichia coli/metabolism , Polymerase Chain Reaction/methods , DNA Replication
6.
PeerJ ; 11: e15680, 2023.
Article in English | MEDLINE | ID: mdl-37483986

ABSTRACT

Background: Ultramicrobacteria (UMB), also known as ultra-small bacteria, are tiny bacteria with a size less than 0.1 µm3. They have a high surface-to-volume ratio and are found in various ecosystems, including the human body. UMB can be classified into two types: one formed through cell contraction and the other that maintains a small size. The ultra-small microbiome (USM), which may contain UMB, includes all bacteria less than 0.2 µm in size and is difficult to detect with current methods. However, it poses a potential threat to food hygiene, as it can pass through sterilization filters and exist in a viable but non-culturable (VBNC) state. The data on the USM of foods is limited. Some bacteria, including pathogenic species, are capable of forming UMB under harsh conditions, making it difficult to detect them through conventional culture techniques. Methods: The study described above focused on exploring the diversity of USM in fermented cabbage samples from three different countries (South Korea, China, and Germany). The samples of fermented cabbage (kimchi, suancai, and sauerkraut) were purchased and stored in chilled conditions at approximately 4 °C until filtration. The filtration process involved two steps of tangential flow filtration (TFF) using TFF cartridges with different pore sizes (0.2 µm and 100 kDa) to separate normal size bacteria (NM) and USM. The USM and NM isolated via TFF were stored in a refrigerator at 4 °C until DNA extraction. The extracted DNA was then amplified using PCR and the full-length 16S rRNA gene was sequenced using single-molecule-real-time (SMRT) sequencing. The transmission electron microscope (TEM) was used to confirm the presence of microorganisms in the USM of fermented cabbage samples. Results: To the best of our knowledge, this is the first study to identify the differences between USM and NM in fermented cabbages. Although the size of the USM (average 2,171,621 bp) was smaller than that of the NM (average 15,727,282 bp), diversity in USM (average H' = 1.32) was not lower than that in NM (average H' = 1.22). In addition, some members in USM probably underwent cell shrinkage due to unfavorable environments, while others maintained their size. Major pathogens were not detected in the USM in fermented cabbages. Nevertheless, several potentially suspicious strains (genera Cellulomonas and Ralstonia) were detected. Our method can be used to screen food materials for the presence of USM undetectable via conventional methods. USM and NM were efficiently separated using tangential flow filtration and analyzed via single-molecule real-time sequencing. The USM of fermented vegetables exhibited differences in size, diversity, and composition compared with the conventional microbiome. This study could provide new insights into the ultra-small ecosystem in fermented foods, including fermented cabbages.


Subject(s)
Brassica , Microbiota , Bacteria/genetics , Brassica/genetics , DNA , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Vegetables/genetics
7.
Curr Med Imaging ; 2023 06 12.
Article in English | MEDLINE | ID: mdl-37309764

ABSTRACT

BACKGROUND: Synthetic MRI can provide multiple contrast-weighted brain images with high resolution from a single scan via a 3D sequence using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS). OBJECTIVE: This study aimed to assess the diagnostic image quality of 3D synthetic MRI using compressed sensing (CS) in clinical practice. METHODS: We retrospectively reviewed the imaging data of 47 patients who underwent brain MRI, including 3D synthetic MRI using CS in a single session, between December 2020 and February 2021. Two neuroradiologists independently evaluated the overall image quality, anatomic demarcation, and artifacts for synthetic 3D T1-weighted, T2-weighted, FLAIR, phase-sensitive inversion recovery (PSIR), and double inversion recovery images, using a 5-point Likert scale. The interobserver agreement between the two readers was assessed using percent agreement and weighted κ statistics. RESULTS: The overall image quality of 3D synthetic T1WI and PSIR was good to excellent, with easy or excellent anatomic demarcation and mild or no visible artifact. However, other 3D synthetic MRI-derived images showed insufficient image quality and anatomic demarcation with marked CSF pulsation artifacts. In particular, 3D synthetic FLAIR showed high-signal artifacts on the brain surface. CONCLUSION: 3D synthetic MRI, at its current status, cannot completely replace conventional brain MRI in daily clinical practice. However, 3D synthetic MRI can achieve scan-time reduction using CS and parallel imaging and may be useful for motion-prone or pediatric patients requiring 3D images where time-efficiency is important.

8.
Bioeng Transl Med ; 8(2): e10423, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36925698

ABSTRACT

Herein, we report the first study to create a three-dimensional (3D) bioprinted artificial larynx for whole-laryngeal replacement. Our 3D bio-printed larynx was generated using extrusion-based 3D bioprinter with rabbit's chondrocyte-laden gelatin methacryloyl (GelMA)/glycidyl-methacrylated hyaluronic acid (GMHA) hybrid bioink. We used a polycaprolactone (PCL) outer framework incorporated with pores to achieve the structural strength of printed constructs, as well as to provide a suitable microenvironment to support printed cells. Notably, we established a novel fluidics supply (FS) system that simultaneously supplies basal medium together with a 3D bioprinting process, thereby improving cell survival during the printing process. Our results showed that the FS system enhanced post-printing cell viability, which enabled the generation of a large-scale cell-laden artificial laryngeal framework. Additionally, the incorporation of the PCL outer framework with pores and inner hydrogel provides structural stability and sufficient nutrient/oxygen transport. An animal study confirmed that the transplanted 3D bio-larynx successfully maintained the airway. With further development, our new strategy holds great potential for fabricating human-scale larynxes with in vivo-like biological functions for laryngectomy patients.

10.
BMB Rep ; 56(2): 120-125, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36593106

ABSTRACT

Karyopherin-α3 (KPNA3), a karyopherin- α isoform, is intimately associated with metastatic progression via epithelial-mesenchymal transition (EMT). However, the molecular mechanism underlying how KPNA3 acts as an EMT inducer remains to be elucidated. In this report, we identified that KPNA3 was significantly upregulated in cancer cells, particularly in triple-negative breast cancer, and its knockdown resulted in the suppression of cell proliferation and metastasis. The comprehensive transcriptome analysis from KPNA3 knockdown cells indicated that KPNA3 is involved in the regulation of numerous EMTrelated genes, including the downregulation of GATA3 and E-cadherin and the up-regulation of HAS2. Moreover, it was found that KPNA3 EMT-mediated metastasis can be achieved by TGF-ß or AKT signaling pathways; this suggests that the novel independent signaling pathways KPNA3-TGF-ß-GATA3-HAS2/E-cadherin and KPNA3-AKT-HAS2/E-cadherin are involved in the EMT-mediated progress of TNBC MDA-MB-231 cells. These findings provide new insights into the divergent EMT inducibility of KPNA3 according to cell and cancer type. [BMB Reports 2023; 56(2): 120-125].


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , alpha Karyopherins , Female , Humans , alpha Karyopherins/metabolism , Cadherins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Triple Negative Breast Neoplasms/metabolism
11.
Biosens Bioelectron ; 222: 115003, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36525711

ABSTRACT

Cancer spheroids, which mimic distinct cell-to-cell and cell-extracellular matrix interactions of solid tumors in vitro, have emerged as a promising tumor model for drug screening. However, owing to the unique characteristics of spheroids composed of three-dimensionally densely-packed cells, the precise characterizations of cell viability and function with conventional colorimetric assays are challenging. Herein, we report gold nanostructure-integrated conductive microwell arrays (GONIMA) that enable both highly efficient uniform cancer spheroid formation and precise electrochemical detection of cell viability. A nanostructured gold on indium tin oxide (ITO) substrate facilitated the initial cell aggregation and further 3D cell growth, while the non-cytophilic polymer microwell arrays restricted the size and shape of the spheroids. As a result, approximately 150 human glioblastoma spheroids were formed on a chip area of 1.13 cm2 with an average diameter of 224 µm and a size variation of only 5% (±11.36 µm). The high uniformity of cancer spheroids contributed to the stability of electrical signals measuring cell viability. Using the fabricated GONIMA, the effects of a representative chemotherapeutic agent, hydroxyurea, on the glioblastoma spheroids were precisely monitored under conditions of varying drug concentrations (0-0.3 mg/mL) and incubation times (24-48 h). Therefore, we conclude that the newly developed platform is highly useful for rapid and precise in vitro drug screening, as well as for the pharmacokinetic analyses of specific drugs using 3D cellular cancer models.


Subject(s)
Biosensing Techniques , Glioblastoma , Humans , Spheroids, Cellular , Drug Evaluation, Preclinical , Gold , Early Detection of Cancer
12.
Infect Chemother ; 55(1): 42-49, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36450291

ABSTRACT

BACKGROUND: Determination of the release from isolation for coronavirus disease 2019 (COVID-19) in immunocompromised patients who need additional hospitalization for treatment of non-COVID-19 related disease is important to prevent nosocomial transmission. However, there is insufficient evidence for an extended isolation period. MATERIALS AND METHODS: In September 2021, when the Delta variant was dominant, a nosocomial outbreak of COVID-19 occurred in the nephrology ward of a tertiary hospital in Gwangju, Korea. We conducted epidemiological investigations and whole-genome sequencing (WGS) of this virus. RESULTS: A man who underwent kidney transplantation was admitted to our hospital for the treatment of acute kidney injury. He was diagnosed with asymptomatic COVID-19 infection during a pre-admission screening test on September 1, 2021 and underwent isolation. After 10 days of isolation in the COVID-19-designated ward, he was transferred to the general nephrology ward. He underwent steroid pulse therapy (September 17 to September 23, >60 mg/day prednisolone) due to acute T-cell rejection. On September 28, 2021, the first patient with COVID-19 was identified in the nephrology ward, and a rapid-response team was activated to identify additional patients with COVID-19 and prevent the spread of COVID-19. Epidemiological investigations revealed that 12 patients, two caregivers, and three healthcare workers from the nephrology ward were diagnosed with COVID-19. The WGS of specimens from 14 nosocomial outbreak samples and released an index patient exhibited the same Delta variant originating from the B.1.617.2 lineage. This hospital-acquired COVID-19 outbreak in the nephrology ward resulted in two (11.7%) deaths in patients who underwent kidney transplantation. CONCLUSION: We demonstrated that an immunocompromised patient can cause a nosocomial outbreak due to the prolonged shedding of infectious viruses. Prolonged isolation in patients under active immunosuppressive therapy may be necessary to prevent transmission, especially in the hospital setting.

13.
Interv Neuroradiol ; 29(3): 251-259, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35238235

ABSTRACT

BACKGROUND: Coil embolization is the mainstay treatment for carotid-cavernous fistulas (CCFs). However, few studies have reported entire occlusion of engorged veins to interrupt venous outflow. We report our experience with venous outflow-targeted coil embolization of direct CCFs. METHODS: We retrospectively reviewed all the patients diagnosed with direct CCFs treated with venous outflow-targeted coil embolization between November 2013 and February 2020. Venous outflow-targeted coil embolization of the CCFs was performed as follows. First, transarterial stent-assisted coil embolization of CCFs was performed. If the venous outflow to the engorged veins persisted after transarterial stent-assisted coil embolization, entire occlusion of the engorged veins and additional coil packing within the cavernous sinus were performed to interrupt the venous outflow. RESULTS: Ten patients had undergone venous outflow-targeted coil embolization, 6 women (60%) and 4 men (40%). Transfemoral cerebral angiography showed high-flow, direct CCFs in all the patients. Venous outflow occurred through the superior ophthalmic vein (SOV) in all the patients and was completely interrupted by the entire occlusion of the engorged veins with fibered coils. Three patients (30%) had undergone additional treatment in a supplementary manner because of recurrent symptoms (chemosis in 1 patient, faint tinnitus in 2 patients) in the early postprocedural period (1 to 4 weeks). All the symptoms were resolved on follow-up. No additional recurrence was found during follow-up (1-75 months). No peri-procedural complications were encountered. CONCLUSIONS: Venous outflow-targeted coil embolization of CCFs would be a safe and effective treatment method.


Subject(s)
Carotid-Cavernous Sinus Fistula , Cavernous Sinus , Embolization, Therapeutic , Male , Humans , Female , Retrospective Studies , Carotid-Cavernous Sinus Fistula/diagnostic imaging , Carotid-Cavernous Sinus Fistula/therapy , Cavernous Sinus/surgery , Veins , Treatment Outcome , Embolization, Therapeutic/methods
14.
RSC Adv ; 12(55): 35943-35949, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36545110

ABSTRACT

In order to improve the electrocatalytic activity and stability of an iridium (Ir) nanoparticle catalyst toward the oxygen evolution reaction (OER) in acidic electrolyte, carbon nanotube and titanium dioxide nanocomposites (CNT@TiO2) are presented as a high-performance support. TiO2 was synthesized on CNTs by using a novel layer-by-layer solution coating method that mimics atomic layer deposition (ALD) but is cost-effective and scalable. In the nanocomposites, CNTs serve as the electron pathways and the surface TiO2 layers protect CNTs from corrosion under the harsh OER conditions. Thus, CNT@TiO2 demonstrates excellent corrosion resistance as well as a high electrical conductivity (1.6 ± 0.2 S cm-1) comparable to that of Vulcan carbon (1.4 S cm-1). The interaction between Ir and TiO2 promotes the formation of Ir(iii) species, thereby enhancing the OER activity and stability of the Ir nanoparticle catalyst. Compared to commercial carbon-supported Ir (Ir/C) and Ir black catalysts, CNT@TiO2-supported Ir exhibits superior OER activity and stability.

15.
Bioengineering (Basel) ; 9(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36550948

ABSTRACT

The hyaluronic acid (HA) hydrogel array was employed for immobilization of 5-fluorouracil (5-FU), and the electrospun bilayer (hydrophilic: polyurethane/pluronic F-127 and hydrophobic: polyurethane) membrane was used to support the HA hydrogel array as a patch. To visualize the drug propagating phenomenon into tissues, we experimentally investigated how FITC-BSA diffused into the tissue by applying hydrogel patches to porcine tissue samples. The diffusive phenomenon basically depends on the FITC-BSA diffusion coefficient in the hydrogel, and the degree of diffusion of FITC-BSA may be affected by the concentration of HA hydrogel, which demonstrates that the high density of HA hydrogel inhibits the diffusive FITC-BSA migration toward the low concentration region. YD-10B cells were employed to investigate the release of 5-FU from the HA array on the bilayer membrane. In the control group, YD-10B cell viability was over 98% after 3 days. However, in the 5-FU-immobilized HA hydrogel array, most of the YD-10B cells were not attached to the bilayer membrane used as a scaffold. These results suggest that 5-FU was locally released and initiated the death of the YD-10B cells. Our results show that 5-FU immobilized on HA arrays significantly reduces YD-10B cell adhesion and proliferation, affecting cells even early in the cell culture. Our results suggest that when 5-FU is immobilized in the HA hydrogel array on the bilayer membrane as a drug patch, it is possible to control the drug concentration, to release it continuously, and that the patch can be applied locally to the targeted tumor site and administer the drug in a time-stable manner. Therefore, the developed bilayer membrane-based HA hydrogel array patch can be considered for sustained release of the drug in biomedical applications.

16.
Korean J Neurotrauma ; 18(2): 246-253, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36381441

ABSTRACT

Objective: Tracheostomy is a necessary procedure for patients admitted to the neurosurgery intensive care unit (ICU) with severe brain injury, because mechanical ventilation must be maintained for a long time following neurologic failure. The purpose of this study was to compare conventional surgical tracheostomy (CST) and percutaneous dilatational tracheostomy (PDT) performed at the bedside in critically ill neurosurgery patients requiring tracheostomy to determine which procedure has comparative advantages. Methods: This retprospective study was conducted between January 2019 and December 2020. PDT was performed on 52 patients and CST was performed on 44 patients. The baseline characteristics, procedural characteristics, and clinical outcomes were recorded. Results: The mean operative time in the CST group was 25.5±6.5 minutes and that in the PDT group was 15.1±2.5 minutes; the difference was statistically significant (p<0.01). Four patients in the CST group and none in the PDT group experienced bleeding requiring transfusion. However, there was no significant difference in total ICU mortality or length of hospital stay. There were no statistical differences in the individual complication categories between the 2 study groups. Conclusion: There were fewer procedure-induced complications among patients receiving PDT than among those receiving CST. In addition, the treatment time for PDT was shorter than that for CST treatment.

17.
Int J Mol Sci ; 23(17)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36077518

ABSTRACT

The degeneration of an intervertebral disc (IVD) is a major cause of lower back pain. IVD degeneration is characterized by the abnormal expression of inflammatory cytokines and matrix degradation enzymes secreted by IVD cells. In addition, macrophage-mediated inflammation is strongly associated with IVD degeneration. However, the precise pathomechanisms of macrophage-mediated inflammation in IVD are still unknown. In this study, we developed a microfluidic platform integrated with an electrical stimulation (ES) array to investigate macrophage-mediated inflammation in human nucleus pulposus (NP). This platform provides multiple cocultures of different cell types with ES. We observed macrophage-mediated inflammation and considerable migration properties via upregulated expression of interleukin (IL)-6 (p < 0.001), IL-8 (p < 0.05), matrix metalloproteinase (MMP)-1 (p < 0.05), and MMP-3 (p < 0.05) in human NP cells cocultured with macrophages. We also confirmed the inhibitory effects of ES at 10 µA due to the production of IL-6 (p < 0.05) and IL-8 (p < 0.01) under these conditions. Our findings indicate that ES positively affects degenerative inflammation in diverse diseases. Accordingly, the microfluidic electroceutical platform can serve as a degenerative IVD inflammation in vitro model and provide a therapeutic strategy for electroceuticals.


Subject(s)
Intervertebral Disc Degeneration , Microfluidics , Nucleus Pulposus , Cells, Cultured , Electric Stimulation , Humans , Inflammation/metabolism , Inflammation/therapy , Interleukin-6/metabolism , Interleukin-8/metabolism , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/therapy , Nucleus Pulposus/cytology , Nucleus Pulposus/metabolism
18.
Bioorg Med Chem Lett ; 75: 128956, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36038117

ABSTRACT

Glutamine-addicted cancer metabolism is recently recognized as novel cancer target especially for KRAS and KEAP1 co-occurring mutations. Selective glutaminase1 (GLS1) inhibition was reported using BPTES which has novel mode of allosteric inhibition. However, BPTES is a highly hydrophobic and symmetric molecule with very poor solubility which results in suboptimal pharmacokinetic parameters and hinders its further development. As an ongoing effort to identify more drug-like GLS1 inhibitors via systematic structure - activity relationship (SAR) analysis of BPTES analogs, we disclose our novel macrocycles for GLS1 inhibition with conclusive SAR analysis on the core, core linker, and wing linker, respectively. Selected molecules resulted in reduction in intracellular glutamate levels in LR (LDK378-resistant) cells which is consistent to cell viability result. Finally, compounds 13 selectively reduced the growth of A549 and H460 cells which have co-occurring mutations including KRAS and KEAP1.


Subject(s)
Glutaminase , Thiadiazoles , Animals , Glutamates , Glutamine/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Structure-Activity Relationship , Sulfides/chemistry , Thiadiazoles/chemistry
19.
Viruses ; 14(7)2022 06 30.
Article in English | MEDLINE | ID: mdl-35891425

ABSTRACT

Community mitigation measures taken owing to the COVID-19 pandemic have caused a decrease in the number of respiratory viruses, including the human parainfluenza virus type 3 (HPIV3), and a delay in their occurrence. HPIV3 was rarely detected as a consequence of monitoring respiratory viral pathogens in Gwangju, Korea, in 2020; however, it resurfaced as a delayed outbreak and peaked in September-October 2021. To understand the genetic characteristics of the reemerging virus, antigenic gene sequences and evolutionary analyses of the hemagglutinin-neuraminidase (HN) and fusion (F) genes were performed for 129 HPIV3 pathogens prevalent in Gwangju from 2018 to 2021. Unlike the prevalence of various HPIV3 strains in 2018-2019, the prevalence of HPIV3 by strains with reduced diversity was confirmed in 2021. It could be inferred that this decrease in genetic diversity was due to the restriction of inflow from other regions at home and abroad following the community mitigation measures and the spread within the region. The HPIV3 that emerged in 2021 consisted of HN coding regions that were 100% consistent with the sequence identified in Saitama, Japan, in 2018, and F coding regions exhibiting 99.6% homology to a sequence identified in India in 2017, among the ranks reported to the National Center for Biotechnology Information. The emergence of a new lineage in a community can lead to a mass outbreak by collapsing the collective immunity of the existing acquired area; therefore, continuous monitoring is necessary.


Subject(s)
COVID-19 , Parainfluenza Virus 3, Human , COVID-19/epidemiology , HN Protein/genetics , Humans , Pandemics , SARS-CoV-2/genetics , Viral Fusion Proteins/genetics
20.
Cell Genom ; 2(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35873672

ABSTRACT

We have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks. We dissect DNA methylation processes associated with differentiation, aging, and tumorigenesis. Notably, we find that tissue-specific methylation signatures localize to binding sites for transcription factors controlling the corresponding tissue development. Age-associated hypermethylation is enriched at regions of Polycomb repression, while hypomethylation is enhanced at regions bound by cohesin complex members. Apc Min/+ polyp-associated hypermethylation affects enhancers regulating intestinal differentiation, while hypomethylation targets AP-1 binding sites. This Infinium Mouse Methylation BeadChip (version MM285) is widely accessible to the research community and will accelerate high-sample-throughput studies in this important model organism.

SELECTION OF CITATIONS
SEARCH DETAIL
...