Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 14320, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37652920

ABSTRACT

The Yellow Sea is one of the world's most abundant marine resources, providing food and economic benefits to the Korean and Chinese populations. In spring 2020, a decrease in the intensity of phytoplankton bloom was observed. While one study attributed this decline to a decrease in nutrient associated with the COVID-19 pandemic, our previous research proposed weakened thermal stratification accompanied by a surface cooling anomaly as the cause. However, the relationship between the marine environment and ecosystem has not been fully elucidated. Using observations and marine physical-biogeochemical model data, we identified the weakened stratification as a critical factor for suppressing the 2020 spring bloom. Intense vertical mixing hindered the accumulation of nutrient and chlorophyll-a concentrations within the euphotic zone, resulting in a diminished phytoplankton bloom. In contrast, reduced nitrate and phosphate concentrations in 2020 were insignificant compared to those in 2017-2019, despite the notable decline in PM2.5 in March 2020 due to COVID-19. In April 2020, nutrient levels fell within the range of interannual variability based on long-term observations, reflecting a negligible effect on the spring phytoplankton bloom. Our findings provide insight into the importance of marine physical factors on the phytoplankton biomass in the Yellow Sea.


Subject(s)
Eutrophication , Phytoplankton , Biomass , Ecosystem , Oceans and Seas
2.
Sci Total Environ ; 856(Pt 1): 158436, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36108842

ABSTRACT

Black carbon (BC) exerts profound impacts on air quality, human health, and climate. Here, we investigated concentrations and size distributions of refractory BC (rBC) and mixing state and morphology of rBC-containing particles in urban Seoul for 2019 summer. Mass concentrations of rBC ranged from 0.02 µgm-3 to 2.89 µgm-3, and daily maximums of rBC mass, daily minimums of rBC mass median diameter (MMD) (110-130 nm), and shell-to-core ratio (Rshell/core) occurred with NO2 maximums during morning rush hour. As the first report of ground observations on rBC mixing state, these results indicate that vehicle emission is a major local source of rBC in Seoul. MMDs of 127-146 nm and the greatest mass loadings of ≥1 µg m-3 were accompanied by high O3 and PM2.5 concentrations, in contrast to the largest MMDs (135-165 nm) associated with transport from upstream regions. The average Rshell/core was 1.25 for the rBC mass-equivalent diameter (DrBC) of 140-220 nm. Rshell/core increased gradually through the day and was positively correlated with Ox concentration, indicating photochemical aging of rBC particles. Co-emissions of rBC and volatile organic compounds from vehicles facilitated internal mixing during the daytime. However, Rshell/core tended to be low at temperature >∼30 °C, while 58 % of rBC particles with Rshell/core exceeding 1.25 were found at nighttime under relative humidity >75 %. These results demonstrate that the mixing state of freshly-emitted rBC particles was altered through coating by photochemically oxidized vapors during the day and hygroscopic growth at night. Additionally, the delay-time approach revealed rBC morphological characteristics, the most common being the bare type (74 %), and the attached type (6 %) was relatively large in numbers during morning rush hour. Therefore, it is suggested that during summer, rBC particles from traffic emissions should be considered in parallel to winter pollution mitigation strategies in urban atmosphere of northeast Asia.


Subject(s)
Air Pollutants , Humans , Air Pollutants/analysis , Aerosols/analysis , Environmental Monitoring/methods , Carbon/analysis , Soot , Vehicle Emissions/analysis , Atmosphere , Asia , Particulate Matter/analysis
3.
Environ Pollut ; 305: 119286, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35439601

ABSTRACT

Airborne fine particles can affect climate change and human health; moreover, they can be transported over significant distances. However, studies on characteristics of individual particles and their morphology, elemental composition, aging processes, and spatial distribution after long-range transport over the Yellow Sea are limited. Therefore, in this study, we conducted shipborne measurements of fine particulate matter of less than 2.5 µm in diameter (PM2.5) over the Yellow Sea and classified the individual particles into seven types based on their morphology and composition. Overall, the percentage of organic-rich particles was the highest, followed by that of sea spray, sulfur-rich, dust, metals, fly ash, soot, and other particles. Near Shandong, China, the percentage of fly ash and sulfur-rich particles increased, while an increased percentage of only sulfur-rich particles was observed near the Korean Peninsula. In the open sea, the PM2.5 concentrations were the lowest, and sea spray particles predominated. During the cruises, three types (Types 1, 2, and 3) of events with substantially increased PM2.5 concentrations occurred, each with different dominant particles. Type 1 events frequently featured air masses from northern China and Mongolia with high wind speeds and increased dust particles. Type 2 events involved air masses from China with high wind speeds; fly ash, soot, organic-rich particles, and the sulfate percentage in PM2.5 increased. Type 3 events displayed stagnant conditions and local transport (from Korea); soot, dust particles, and the secondary sulfate and nitrate percentages in PM2.5 increased. Thus, different types of transport affected concentrations and dominant types of fine particles over the Yellow Sea during spring.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , China , Coal Ash , Dust/analysis , Environmental Monitoring , Particulate Matter/analysis , Soot , Sulfates , Sulfur
4.
Environ Sci Technol ; 56(11): 6894-6904, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35394741

ABSTRACT

Carbon- and nitrogen-containing aerosols are ubiquitous in urban atmospheres and play important roles in air quality and climate change. We determined the 14C fraction modern (fM) and δ13C of total carbon (TC) and δ15N of NH4+ in the PM2.5 collected in Seoul megacity during April 2018 to December 2019. The seasonal mean δ13C values were similar to -25.1‰ ± 2.0‰ in warm and -24.2‰ ± 0.82‰ in cold seasons. Mean δ15N values were higher in warm (16.4‰ ± 2.8‰) than in cold seasons (4.0‰ ± 6.1‰), highlighting the temperature effects on atmospheric NH3 levels and phase-equilibrium isotopic exchange during the conversion of NH3 to NH4+. While 37% ± 10% of TC was apportioned to fossil-fuel sources on the basis of fM values, δ15N indicated a higher contribution of emissions from vehicle exhausts and electricity generating units (power-plant NH3 slip) to NH3: 60% ± 26% in warm season and 66% ± 22% in cold season, based on a Bayesian isotope-mixing model. The collective evidence of multiple isotope analysis reasonably supports the major contribution of fossil-fuel-combustion sources to NH4+, in conjunction with TC, and an increased contribution from vehicle emissions during the severe PM2.5 pollution episodes. These findings demonstrate the efficacy of a multiple-isotope approach in providing better insight into the major sources of PM2.5 in the urban atmosphere.


Subject(s)
Air Pollutants , Ammonium Compounds , Aerosols/analysis , Air Pollutants/analysis , Bayes Theorem , Carbon/analysis , China , Environmental Monitoring , Fossil Fuels/analysis , Isotopes , Particulate Matter/analysis , Seasons , Seoul , Vehicle Emissions/analysis
5.
Elementa (Wash D C) ; 9(1): 1-27, 2021 May 12.
Article in English | MEDLINE | ID: mdl-34926709

ABSTRACT

The Korea-United States Air Quality (KORUS-AQ) field study was conducted during May-June 2016. The effort was jointly sponsored by the National Institute of Environmental Research of South Korea and the National Aeronautics and Space Administration of the United States. KORUS-AQ offered an unprecedented, multi-perspective view of air quality conditions in South Korea by employing observations from three aircraft, an extensive ground-based network, and three ships along with an array of air quality forecast models. Information gathered during the study is contributing to an improved understanding of the factors controlling air quality in South Korea. The study also provided a valuable test bed for future air quality-observing strategies involving geostationary satellite instruments being launched by both countries to examine air quality throughout the day over Asia and North America. This article presents details on the KORUS-AQ observational assets, study execution, data products, and air quality conditions observed during the study. High-level findings from companion papers in this special issue are also summarized and discussed in relation to the factors controlling fine particle and ozone pollution, current emissions and source apportionment, and expectations for the role of satellite observations in the future. Resulting policy recommendations and advice regarding plans going forward are summarized. These results provide an important update to early feedback previously provided in a Rapid Science Synthesis Report produced for South Korean policy makers in 2017 and form the basis for the Final Science Synthesis Report delivered in 2020.

6.
Environ Pollut ; 284: 117180, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33906041

ABSTRACT

The physico-chemical properties of submicron aerosols were measured in the spring of 2018 and 2019 over the Yellow Sea onboard the Gisang 1 research vessel. Aerosol number concentrations in 2019 were slightly higher than those in 2018, and the mean number concentrations of particles larger than 10 nm and cloud condensation nuclei (CCN) at 0.6% supersaturation (S) in spring 2019 were 7312 ± 3807 cm-3 and 4816 ± 1692 cm-3, respectively. Aerosol concentrations in June were lower than those in April and May, which was considered to be due to the East Asian summer monsoon. Aerosol number concentrations and size distributions were significantly influenced by meteorological conditions, such as wind and relative humidity. Aitken and accumulation mode particles dominated the aerosol number size distributions over the Yellow Sea. A distinct new particle formation (NPF) and growth event was observed, the spatial extent of which was estimated to cover at least 200 km × 400 km of the Yellow Sea. The general characteristics of NPF and growth over the Yellow Sea were similar to those in rural areas. Aerosol number concentrations below 1000 cm-3 were recorded on extremely clean days. A CCN closure experiment conducted using previous measurement data showed good results, indicating that CCN concentrations can be estimated with good accuracy, and the hygroscopicity over the Yellow Sea was similar to that of aged continental aerosols.


Subject(s)
Wind , Aerosols/analysis , Particle Size , Seasons
7.
Article in English | MEDLINE | ID: mdl-33746556

ABSTRACT

Photolysis of nitrous acid (HONO) is recognized as an early-morning source of OH radicals in the urban air. During the Korea-US air quality (KORUS-AQ) campaign, HONO was measured using quantum cascade - tunable infrared laser differential absorption spectrometer (QC-TILDAS) at Olympic Park in Seoul from 17 May, 2016 to 14 June, 2016. The HONO concentration was in the range of 0.07-3.46 ppbv, with an average of 0.93 ppbv. Moreover, it remained high from 00:00-05:00 LST. During this time, the mean concentration was higher during the high-O3 episodes (1.82 ppbv) than the non-episodes (1.20 ppbv). In the morning, the OH radicals that were produced from HONO photolysis were 50% higher (0.95 pptv) during the high-O3 episodes than the non-episodes. Diurnal variations in HOx and O3 concentrations were simulated by the F0AM model, which revealed a difference of ~20 ppbv in the daily maximum O3 concentrations between the high-O3 episodes and non-episodes. Furthermore, the HONO concentration increased with an increase in relative humidity (RH) up to 80%; the highest HONO was associated with the top 10% NO2 in each RH group, confirming that NO2 is one of the main precursors of HONO. At night, the conversion ratio of NO2 to HONO was estimated to be 0.88×10-2 h-1; this ratio was found to increase with an increase in RH. The Aitken mode particles (30-120 nm), which act as catalyst surfaces, exhibited a similar tendency with a conversion ratio that increased along with RH, indicating the coupling of surfaces with HONO conversion. Using an artificial neural network (ANN) model, HONO concentrations were successfully simulated with measured variables (r2 = 0.66 as an average of five models). Among these variables, NOx, aerosol surface area, and RH were found to be the main factors affecting the ambient HONO concentrations. The results reveal that RH facilitates the conversion of NO2 to HONO by constraining the availability of aerosol surfaces. This study demonstrates the coupling of HONO with the HOx-O3 cycle in the Seoul Metropolitan Area (SMA) and provides practical evidence of the heterogeneous formation of HONO by employing the ANN model.

8.
Sci Total Environ ; 773: 145531, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33582332

ABSTRACT

We investigated the changes in the size distribution, coating thickness, and mass absorption cross-section (MAC) of black carbon (BC) with aging and estimated the light absorption enhancement (Eabs) in the Asian outflow from airborne in-situ measurements during 2016 KORUS-AQ campaign. The BC number concentration decreased, but mass mean diameter increased with increasing altitude in the West Coast (WC) and Seoul Metropolitan Area (SMA), reflecting the contrast between freshly emitted BC-containing particles at the surface and more aged aerosol associated with aggregation during vertical mixing and transport. Contradistinctively, BC number and mass size distributions were relatively invariant with altitude over the Yellow Sea (YS) because sufficiently aged BC from eastern China were horizontally transported to all altitudes over the YS, and there are no significant sources at the surface. The averaged inferred MAC of refractory BC in three regions reflecting differences in their size distributions increased to 9.8 ± 1.0 m2 g-1 (YS), 9.3 ± 0.9 m2 g-1 (WC), and 8.2 ± 0.9 m2 g-1 (SMA) as BC coating thickness increased from 20 nm to 120 nm. The absorption coefficient of BC calculated from the coating thickness and MAC were highly correlated with the filter-based absorption measurements with the slope of 1.16 and R2 of 0.96 at 550 nm, revealing that the thickly coated BC had a large MAC and absorption coefficient. The Eabs due to the inferred coatings was estimated as 1.0-1.6, which was about 30% lower than those from climate models and laboratory experiments, suggesting that the increase in the BC absorption by the coatings in the Asian outflow is not as large as calculated in the previous studies. Organics contributed to the largest Eabs accounting for 69% (YS), 61% (WC), and 64% (SMA). This implies that organics are largely responsible for the lensing effect of BC rather than sulfates in the Asian outflow.

9.
Environ Pollut ; 266(Pt 2): 115163, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32682020

ABSTRACT

Measuring isotopic ratios in aerosol particles is a powerful tool for identifying major sources, particularly in separating fossil from non-fossil sources and investigating aerosol formation processes. We measured the radiocarbon, stable carbon, and stable nitrogen isotopic composition of PM2.5 in Beijing (BJ) and Changdao (CD) in the North China Plain (NCP) from May to mid-June 2016. The mean PM2.5 concentrations were 48.6 ± 28.2 µg m-3 and 71.2 ± 29.0 µg m-3 in BJ and CD, respectively, with a high contribution (∼66%) from secondary inorganic aerosol (SIA; NO3-, NH4+, and SO42-). The mean δ13C of total carbon (TC) and δ15N of total nitrogen (TN) values differed significantly between the two sites (p-value of <0.001): -25.1 ± 0.3‰ in BJ and -24.5 ± 0.4‰ in CD and 10.6 ± 1.8‰ in BJ and 5.0 ± 3.1‰ in CD, respectively. In BJ, the average δ15N (NH4+) and δ15N (NO3-) values were 12.9 ± 2.3‰ and 5.2 ± 3.5‰, respectively. The ionic molar ratios and isotopic ratios suggest that NO3- in BJ was formed through the phase-equilibrium reaction of NH4NO3 under sufficient NH3 (g) conditions, promoted by fossil-derived NH3 (g) transported with southerly winds. In BJ, fossil fuel sources comprised 52 ± 7% of TC and 45 ± 28% of NH4+ on average, estimated from radiocarbon (14C) analysis and the δ15N and isotope mixing model, respectively. These multiple-isotopic composition results emphasize that PM2.5 enhancement is derived from fossil sources, in which vehicle emissions are a key contributor. The impact of the coal source was sporadically noticeable. Under regional influences, the fossil fuel-driven SIA led to the PM2.5 enhancements. Our findings demonstrate that the multiple-isotope approach is highly advantageous to elucidate the key sources and limiting factors of secondary inorganic PM2.5 aerosols.


Subject(s)
Air Pollutants/analysis , Carbon/analysis , Aerosols/analysis , Beijing , Carbon Isotopes/analysis , China , Environmental Monitoring , Fossils , Nitrogen Isotopes/analysis , Particulate Matter/analysis
10.
Article in English | MEDLINE | ID: mdl-33409323

ABSTRACT

The Korea - United States Air Quality Study (May - June 2016) deployed instrumented aircraft and ground-based measurements to elucidate causes of poor air quality related to high ozone and aerosol concentrations in South Korea. This work synthesizes data pertaining to aerosols (specifically, particulate matter with aerodynamic diameters <2.5 micrometers, PM2.5) and conditions leading to violations of South Korean air quality standards (24-hr mean PM2.5 < 35 µg m-3). PM2.5 variability from AirKorea monitors across South Korea is evaluated. Detailed data from the Seoul vicinity are used to interpret factors that contribute to elevated PM2.5. The interplay between meteorology and surface aerosols, contrasting synoptic-scale behavior vs. local influences, is presented. Transboundary transport from upwind sources, vertical mixing and containment of aerosols, and local production of secondary aerosols are discussed. Two meteorological periods are probed for drivers of elevated PM2.5. Clear, dry conditions, with limited transport (Stagnant period), promoted photochemical production of secondary organic aerosol from locally emitted precursors. Cloudy humid conditions fostered rapid heterogeneous secondary inorganic aerosol production from local and transported emissions (Transport/Haze period), likely driven by a positive feedback mechanism where water uptake by aerosols increased gas-to-particle partitioning that increased water uptake. Further, clouds reduced solar insolation, suppressing mixing, exacerbating PM2.5 accumulation in a shallow boundary layer. The combination of factors contributing to enhanced PM2.5 is challenging to model, complicating quantification of contributions to PM2.5 from local versus upwind precursors and production. We recommend co-locating additional continuous measurements at a few AirKorea sites across South Korea to help resolve this and other outstanding questions: carbon monoxide/carbon dioxide (transboundary transport tracer), boundary layer height (surface PM2.5 mixing depth), and aerosol composition with aerosol liquid water (meteorologically-dependent secondary production). These data would aid future research to refine emissions targets to further improve South Korean PM2.5 air quality.

11.
Article in English | MEDLINE | ID: mdl-34522698

ABSTRACT

To understand the characteristics of air quality in the Seoul Metropolitan Area, intensive measurements were conducted under the Korea-United States Air Quality (KORUS-AQ) campaign. Trace gases such as O3, NOx, NOy, SO2, CO, and volatile organic compounds (VOCs), photochemical byproducts such as H2O2 and HCHO, aerosol species, and meteorological variables including planetary boundary layer height were simultaneously measured at Olympic Park in Seoul. During the measurement period, high O3 episodes that exceeded the 90 ppbv hourly maximum occurred on 14 days under four distinct synoptic meteorological conditions. Furthermore, local circulation such as land-sea breeze and diurnal evolution of the boundary layer were crucial in determining the concentrations of precursor gases, including NOx and VOC as well as O3. During such episodes, the nighttime NOx and VOC and daytime UV levels were higher compared to non-episode days. The overall precursor levels and photochemical activity were represented fairly well by variations in the HCHO, which peaked in the morning during the high O3 episodes. This study revealed that toluene was the most abundant VOC in Seoul, and its concentration increased greatly with NOx due to the large local influence under stagnant conditions. When O3 was highly elevated concurrently with PM2.5 under dominant westerlies, NOx and VOCs were relatively lower and CO was noticeably higher than in other episodes. Additionally, the O3 production efficiency was the highest due to a low NOx with the highest NOz/NOy ratio among the four episodes. When westerlies were dominant in transport-south episode, the nighttime concentration of O 3 remained as high as 40~50 ppbv due to the minimum level of NOx titration. Overall, the Seoul Metropolitan Area is at NOx-saturated and VOC-limited conditions, which was diagnosed by indicator species and VOC/NOx ratios.

12.
Sci Total Environ ; 668: 1310-1316, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31018470

ABSTRACT

The water-soluble ions and carbonaceous compounds of PM1 were measured at the King Sejong Station (KSG) in the northern part of Antarctic Peninsula from March to November in 2009. As the sum of all measured species including organic matter [OM; organic carbon (OC)*1.9], the PM1 mass reached a maximum of 936 ng m-3 with the mean of 686 ±â€¯226 ng m-3. The most abundant constituents were OM (389 ±â€¯109 ng m-3) and sea-salts (Na+ and Cl-, 193 ±â€¯122 ng m-3), which comprised 85% of the PM1 mass. In contrast, the contribution of SO42- was below 1% and its depletion relative to Na+ was prevalent particularly during winter, which was attributed to the frost flowers on newly formed sea-ice surface. The OC concentration was the highest in fall and its subcomponents OC2 and OC3 were moderately correlated with sea-salts (r = 0.5), indicating the marine biogenic source for OC. The elemental carbon (EC) concentration was much lower than OC, leading to the mean OC/EC ratio over 10. While the charred fraction of EC (EC1) was elevated by the long-range transport of biomass burning plume from nearby continent, the mass fraction of soot-EC (EC23) was increased concurrently with enhanced NO3-, suggesting EC23 as a good indicator for local influence in pristine environments like Antarctic region.

13.
Sci Total Environ ; 655: 1505-1514, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30577141

ABSTRACT

Isotopes are essential tools to apportion major sources of aerosols. We measured the radiocarbon, stable carbon, and stable nitrogen isotopic composition of PM2.5 at Taehwa Research Forest (TRF) near Seoul Metropolitan Area (SMA) during August-October 2014. PM2.5, TC, and TN concentrations were 19.4 ±â€¯10.1 µg m-3, 2.6 ±â€¯0.8 µg C m-3, and 1.4 ±â€¯1.4 µg N m-3, respectively. The δ13C of TC and the δ15N of TN were - 25.4 ±â€¯0.7‰ and 14.6 ±â€¯3.8‰, respectively. EC was dominated by fossil-fuel sources with Fff (EC) of 78 ±â€¯7%. In contrast, contemporary sources were dominant for TC with Fc (TC) of 76 ±â€¯7%, revealing the significant contribution of contemporary sources to OC during the growing season. The isotopic signature carries more detailed information on sources depending on air mass trajectories. The urban influence was dominant under stagnant condition, which was in reasonable agreement with the estimated δ15N of NH4+. The low δ15N (7.0 ±â€¯0.2‰) with high TN concentration was apparent in air masses from Shandong province, indicating fossil fuel combustion as major emission source. In contrast, the high δ15N (16.1 ±â€¯3.2‰) with enhanced TC/TN ratio reveals the impact of biomass burning in the air transported from the far eastern border region of China and Russia. Our findings highlight that the multi-isotopic composition is a useful tool to identify emission sources and to trace regional sources of carbonaceous and nitrogen aerosols.

14.
Sci Rep ; 8(1): 5172, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29581448

ABSTRACT

Black carbon (BC) and brown carbon (BrC) aerosols that are released from the combustion of fossil fuels and biomass are of great concern because of their light-absorbing ability and great abundance associated with various anthropogenic sources, particularly in East Asia. However, the optical properties of ambient aerosols are dependent on the mixing state and the chemical composition of absorbing and non-absorbing aerosols. Here we examined how, in East Asian outflows, the parameters of the aerosol optical properties can be altered seasonally in conjunction with the mixing state and the chemical composition of aerosols, using 3-year aerosol measurements. Our findings highlight the important role played by sulfate in East Asia during the warm season in both enhancing single scattering albedo (SSA) and altering the absorption properties of aerosols-enhancing mass absorption cross section of BC (MACBC) and reducing MAC of BrC (MACBrC,370). Therefore we suggest that in global radiative forcing models, particular attention should be paid to the consideration of the accurate treatment of the SO2 emission changes in the coming years in this region that will result from China's air quality policy.

15.
Sci Rep ; 7(1): 10422, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874801

ABSTRACT

Wintertime East Asia is plagued by severe haze episodes, characterized by large contributions of carbonaceous aerosols. However, the sources and atmospheric transformations of these major components are poorly constrained, hindering development of efficient mitigation strategies and detailed modelling of effects. Here we present dual carbon isotope (δ13C and Δ14C) signatures for black carbon (BC), organic carbon (OC) and water-soluble organic carbon (WSOC) aerosols collected in urban (Beijing and BC for Shanghai) and regional receptors (e.g., Korea Climate Observatory at Gosan) during January 2014. Fossil sources (>50%) dominate BC at all sites with most stemming from coal combustion, except for Shanghai, where liquid fossil source is largest. During source-to-receptor transport, the δ13C fingerprint becomes enriched for WSOC but depleted for water-insoluble OC (WIOC). This reveals that the atmospheric processing of these two major pools are fundamentally different. The photochemical aging (e.g., photodissociation, photooxidation) during formation and transport can release CO2/CO or short-chain VOCs with lighter carbon, whereas the remaining WSOC becomes increasingly enriched in δ13C. On the other hand, several processes, e.g., secondary formation, rearrangement reaction in the particle phase, and photooxidation can influence WIOC. Taken together, this study highlights high fossil contributions for all carbonaceous aerosol sub-compartments in East Asia, and suggests different transformation pathways for different classes of carbonaceous aerosols.

16.
Faraday Discuss ; 200: 529-557, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28580969

ABSTRACT

Cavity enhanced spectroscopy, CES, is a high sensitivity direct absorption method that has seen increasing utility in the last decade, a period also marked by increasing requirements for understanding human impacts on atmospheric composition. This paper describes the current NOAA six channel cavity ring-down spectrometer (CRDS, the most common form of CES) for measurement of nitrogen oxides and O3. It further describes the results from measurements from a tower 300 m above the urban area of Seoul in late spring of 2015. The campaign demonstrates the performance of the CRDS instrument and provides new data on both photochemistry and nighttime chemistry in a major Asian megacity. The instrument provided accurate, high time resolution data for N2O5, NO, NO2, NOy and O3, but suffered from large wall loss in the sampling of NO3, illustrating the requirement for calibration of the NO3 inlet transmission. Both the photochemistry and nighttime chemistry of nitrogen oxides and O3 were rapid in this megacity. Sustained average rates of O3 buildup of 10 ppbv h-1 during recurring morning and early afternoon sea breezes led to a 50 ppbv average daily O3 rise. Nitrate radical production rates, P(NO3), averaged 3-4 ppbv h-1 in late afternoon and early evening, much greater than contemporary data from Los Angeles, a comparable U. S. megacity. These P(NO3) were much smaller than historical data from Los Angeles, however. Nighttime data at 300 m above ground showed considerable variability in high time resolution nitrogen oxide and O3, likely resulting from sampling within gradients in the nighttime boundary layer structure. Apparent nighttime biogenic VOC oxidation rates of several ppbv h-1 were also likely influenced by vertical gradients. Finally, daytime N2O5 mixing ratios of 3-35 pptv were associated with rapid daytime P(NO3) and agreed well with a photochemical steady state calculation.

17.
Faraday Discuss ; 189: 231-51, 2016 07 18.
Article in English | MEDLINE | ID: mdl-27138104

ABSTRACT

South Korea has recently achieved developed country status with the second largest megacity in the world, the Seoul Metropolitan Area (SMA). This study provides insights into future changes in air quality for rapidly emerging megacities in the East Asian region. We present total OH reactivity observations in the SMA conducted at an urban Seoul site (May-June, 2015) and a suburban forest site (Sep, 2015). The total OH reactivity in an urban site during the daytime was observed at similar levels (∼15 s(-1)) to those previously reported from other East Asian megacity studies. Trace gas observations indicate that OH reactivity is largely accounted for by NOX (∼50%) followed by volatile organic compounds (VOCs) (∼35%). Isoprene accounts for a substantial fraction of OH reactivity among the comprehensive VOC observational dataset (25-47%). In general, observed total OH reactivity can be accounted for by the observed trace gas dataset. However, observed total OH reactivity in the suburban forest area cannot be largely accounted for (∼70%) by the trace gas measurements. The importance of biogenic VOC (BVOCs) emissions and oxidations used to evaluate the impacts of East Asian megacity outflows for the regional air quality and climate contexts are highlighted in this study.

18.
Environ Sci Technol ; 50(12): 6284-92, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27203471

ABSTRACT

Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1-1.3 µg m(-3)). The remaining 24 ± 11% (0.03-0.42 µg m(-3)) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5-2.8 µg m(-3)), approximately half of which was apportioned to primary biomass-burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols , Carbon , China , Environmental Monitoring , Fossils , Seasons
19.
Environ Sci Technol ; 48(1): 491-8, 2014.
Article in English | MEDLINE | ID: mdl-24298975

ABSTRACT

The sources of halogenated compounds in East Asia associated with stratospheric ozone depletion and climate change are relatively poorly understood. High-precision in situ measurements of 18 halogenated compounds and carbonyl sulfide (COS) made at Gosan, Jeju Island, Korea, from November 2007 to December 2011 were analyzed by a positive matrix factorization (PMF). Seven major industrial sources were identified from the enhanced concentrations of halogenated compounds observed at Gosan and corresponding concentration-based source contributions were also suggested: primary aluminum production explaining 37% of total concentration enhancements, solvent usage of which source apportionment is 25%, fugitive emissions from HCFC/HFC production with 11%, refrigerant replacements (9%), semiconductor/electronics industry (9%), foam blowing agents (6%), and fumigation (3%). Statistical trajectory analysis was applied to specify the potential emission regions for seven sources using back trajectories. Primary aluminum production, solvent usage and fugitive emission sources were mainly contributed by China. Semiconductor/electronics sources were dominantly located in Korea. Refrigerant replacement, fumigation and foam blowing agent sources were spread throughout East Asian countries. The specified potential source regions are consistent with country-based consumptions and emission patterns, verifying the PMF analysis results. The industry-based emission sources of halogenated compounds identified in this study help improve our understanding of the East Asian countries' industrial contributions to halogenated compound emissions.


Subject(s)
Air Pollutants/analysis , Climate Change , Environmental Monitoring/methods , Hydrocarbons, Halogenated/analysis , Industry , Models, Theoretical , Asia, Eastern , Least-Squares Analysis , Seasons
20.
Environ Sci Technol ; 47(16): 9102-8, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23844635

ABSTRACT

The limited understanding of black carbon (BC) aerosol emissions from incomplete combustion causes a poorly constrained anthropogenic climate warming that globally may be second only to CO2 and regionally, such as over East Asia, the dominant driver of climate change. The relative contribution to atmospheric BC from fossil fuel versus biomass combustion is important to constrain as fossil BC is a stronger climate forcer. The source apportionment is the underpinning for targeted mitigation actions. However, technology-based "bottom-up" emission inventories are inconclusive, largely due to uncertain BC emission factors from small-scale/household combustion and open burning. We use "top-down" radiocarbon measurements of atmospheric BC from five sites including three city sites and two regional sites to determine that fossil fuel combustion produces 80 ± 6% of the BC emitted from China. This source-diagnostic radiocarbon signal in the ambient aerosol over East Asia establishes a much larger role for fossil fuel combustion than suggested by all 15 BC emission inventory models, including one with monthly resolution. Our results suggest that current climate modeling should refine both BC emission strength and consider the stronger radiative absorption associated with fossil-fuel-derived BC. To mitigate near-term climate effects and improve air quality in East Asia, activities such as residential coal combustion and city traffic should be targeted.


Subject(s)
Air Pollution/analysis , Carbon/analysis , Aerosols/analysis , Carbon Radioisotopes/analysis , China , Forensic Sciences
SELECTION OF CITATIONS
SEARCH DETAIL
...