Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunol ; 36(9): 451-464, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38642134

ABSTRACT

Chronic bone loss is an under-recognized complication of malaria, the underlying mechanism of which remains incompletely understood. We have previously shown that persistent accumulation of Plasmodium products in the bone marrow leads to chronic inflammation in osteoblast (OB) and osteoclast (OC) precursors causing bone loss through MyD88, an adaptor molecule for diverse inflammatory signals. However, the specific contribution of MyD88 signaling in OB or OC precursors in malaria-induced bone loss remains elusive. To assess the direct cell-intrinsic role of MyD88 signaling in adult bone metabolism under physiological and infection conditions, we used the Lox-Cre system to specifically deplete MyD88 in the OB or OC lineages. Mice lacking MyD88 primarily in the maturing OBs showed a comparable decrease in trabecular bone density by microcomputed tomography to that of controls after Plasmodium yoelii non-lethal infection. In contrast, mice lacking MyD88 in OC precursors showed significantly less trabecular bone loss than controls, suggesting that malaria-mediated inflammatory mediators are primarily controlled by MyD88 in the OC lineage. Surprisingly, however, depletion of MyD88 in OB, but not in OC, precursors resulted in reduced bone mass with decreased bone formation rates in the trabecular areas of femurs under physiological conditions. Notably, insulin-like growth factor-1, a key molecule for OB differentiation, was significantly lower locally and systemically when MyD88 was depleted in OBs. Thus, our data demonstrate an indispensable intrinsic role for MyD88 signaling in OB differentiation and bone formation, while MyD88 signaling in OC lineages plays a partial role in controlling malaria-induced inflammatory mediators and following bone pathology. These findings may lead to the identification of novel targets for specific intervention of bone pathologies, particularly in malaria-endemic regions.


Subject(s)
Bone Remodeling , Homeostasis , Malaria , Mice, Knockout , Myeloid Differentiation Factor 88 , Osteoblasts , Osteoclasts , Animals , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Malaria/immunology , Osteoblasts/metabolism , Osteoblasts/immunology , Mice , Osteoclasts/metabolism , Osteoclasts/immunology , Plasmodium yoelii/immunology , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL