Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Pharmacol Sci ; 115(2): 214-20, 2011.
Article in English | MEDLINE | ID: mdl-21282935

ABSTRACT

MS-IPA1 is a new synthetic compound that is synthesized from tryptamine. Recently, our group demonstrated that SST-VED-I-1, which has a similar chemical structure to MS-IPA1, inhibits starvation-induced apoptosis in osteoblasts. However, the effects of MS-IPA1 on apoptosis in osteoblasts have not yet been examined. Therefore, this study examined the effects of this compound on apoptosis in osteoblasts. In this study, MC3T3-E1 mouse osteoblasts were used and apoptosis was induced by ultraviolet radiation (UV). We investigated the effect of MS-IPA1 on apoptosis by analyzing caspase3/7 activity, translocation of phosphatidylserine (PS), and mRNA expression levels of Bcl-2 and Bax. In addition, it was investigated whether MS-IPA1 affects cell proliferation and cell cycle progression. We found that MS-IPA1 had no effect on cell proliferation or cell cycle progression. However, MS-IPA1 suppressed UV-induced cell death in a dose-dependent manner, which was accompanied with the inhibition of caspase activation and translocation of PS. Furthermore, after UV exposure, Bcl-2 expression was increased in the MS-IPA1-treated cells as compared to that in the vehicle-treated cells. In contrast, Bax expression was decreased in the MS-IPA1-treated cell as compared to that in the vehicle-treated cells. These results suggest that MS-IPA1 has an inhibitory effect on apoptosis in osteoblasts through a Bcl-2 family-dependent signaling pathway.


Subject(s)
Apoptosis/drug effects , Osteoblasts/drug effects , Tryptamines/pharmacology , Ultraviolet Rays , Animals , Annexins/metabolism , Caspase 3/metabolism , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Mice , Osteoblasts/cytology , Osteoblasts/radiation effects , Signal Transduction/drug effects
2.
J Cell Physiol ; 226(3): 739-48, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20717928

ABSTRACT

Osteoblasts and adipocytes originate from common mesenchymal progenitor cells and although a number of compounds can induce osteoblastic and adipogenic differentiation from progenitor cells, the underlying mechanisms have not been elucidated. The present study examined the synergistic effects of dexamethasone (Dex) and bone morphogenetic protein (BMP)-2 on the differentiation of clonal mesenchymal progenitor cells isolated from rat calvaria into osteoblasts and adipocytes, as well as the effects of the timing of treatment. Cells were cultured for various periods of time in the presence of Dex and/or BMP-2. When cells were treated with Dex+BMP-2 during the early phase of differentiation, they differentiated into adipocytes. However, when cells were treated with Dex+BMP-2 during the late phase of differentiation, a synergistic effect on in vitro matrix mineralization was observed. To examine differences between the early and late phases of differentiation, ALP activity was measured in the presence of BMP-2. ALP activity increased markedly on Day 9, corresponding to the onset of the synergistic effect of Dex. Dex treatment inhibited osterix (OSX) expression in cells committed to adipogenic differentiation, but not in cells committed to osteogenic differentiation following BMP-2 treatment. The isoform2 OSX promoter region was found to be involved in the effects of Dex on cells during the early phase of differentiation. Furthermore, cells stably expressing OSX (isoform2) formed mineralized nodules even though they had been treated with Dex+BMP-2 during the early phase of differentiation. It appears that Dex modulates osteogenesis and adipogenesis in mesenchymal stem cells by regulating OSX expression.


Subject(s)
Adipogenesis/drug effects , Dexamethasone/pharmacology , Gene Expression Regulation/drug effects , Osteogenesis/drug effects , Skull/cytology , Transcription Factors/genetics , Animals , Biomarkers/metabolism , Bone Morphogenetic Protein 2/pharmacology , Calcification, Physiologic/drug effects , Cell Line , Humans , Lipids/chemistry , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Time Factors , Transcription Factors/metabolism
3.
J Pharmacol Sci ; 115(2): 214-220, 2011.
Article in English | MEDLINE | ID: mdl-32272539

ABSTRACT

MS-IPA1 is a new synthetic compound that is synthesized from tryptamine. Recently, our group demonstrated that SST-VED-I-1, which has a similar chemical structure to MS-IPA1, inhibits starvation-induced apoptosis in osteoblasts. However, the effects of MS-IPA1 on apoptosis in osteoblasts have not yet been examined. Therefore, this study examined the effects of this compound on apoptosis in osteoblasts. In this study, MC3T3-E1 mouse osteoblasts were used and apoptosis was induced by ultraviolet radiation (UV). We investigated the effect of MS-IPA1 on apoptosis by analyzing caspase3/7 activity, translocation of phosphatidylserine (PS), and mRNA expression levels of Bcl-2 and Bax. In addition, it was investigated whether MS-IPA1 affects cell proliferation and cell cycle progression. We found that MS-IPA1 had no effect on cell proliferation or cell cycle progression. However, MS-IPA1 suppressed UV-induced cell death in a dose-dependent manner, which was accompanied with the inhibition of caspase activation and translocation of PS. Furthermore, after UV exposure, Bcl-2 expression was increased in the MS-IPA1-treated cells as compared to that in the vehicle-treated cells. In contrast, Bax expression was decreased in the MS-IPA1-treated cell as compared to that in the vehicle-treated cells. These results suggest that MS-IPA1 has an inhibitory effect on apoptosis in osteoblasts through a Bcl-2 family-dependent signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL