Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 53(20): 5117-21, 2014 May 12.
Article in English | MEDLINE | ID: mdl-24692040

ABSTRACT

A widely employed route for synthesizing mesostructured materials is the use of surfactant micelles or amphiphilic block copolymers as structure-directing agents. A versatile synthesis method is described for mesostructured materials composed of ultrathin inorganic frameworks using amorphous linear-chain polymers functionalized with a random distribution of side groups that can participate in inorganic crystallization. Tight binding of the side groups with inorganic species enforces strain in the polymer backbones, limiting the crystallization to the ultrathin micellar scale. This method is demonstrated for a variety of materials, such as hierarchically nanoporous zeolites, their aluminophosphate analogue, TiO2 nanosheets of sub-nanometer thickness, and mesoporous TiO2, SnO2, and ZrO2. This polymer-directed synthesis is expected to widen our accessibility to unexplored mesostructured materials in a simple and mass-producible manner.

2.
Mol Cells ; 14(2): 177-84, 2002 Oct 31.
Article in English | MEDLINE | ID: mdl-12442888

ABSTRACT

Copper ion is an essential micronutrient but it is also extremely cytotoxic when it exists in excess. Our studies have shown that Salmonella enterica serovar Typhimurium can survive potentially lethal copper exposures by the way of copper efflux system. A copper ion inducible gene was identified in virulent S. typhimurium by using the technique of MudJ (Km, lac)-directed lacZYA operon fusions. A copper ion inducible strain LF153 (cuiD::MudJ) has been identified. The cuiD mutant exhibits a copper sensitive phenotype but possesses normal resistance to other metal ions, and lost DMP oxidase activity. Therefore, we suggest that cuiD is an important gene for copper homeostasis and the copper resistance response. The copper sensitive phenotype was complemented by pYL3.0 carrying cuiD+. Sequence analysis showed cuiD contains 1,614 bp encoding a 536 amino acid with a 27 amino acid signal peptide and a 509 amino acid residues comprising the mature peptide. The CuiD shows 81% homology to YacK, a putative multicopper oxidases which extrudes copper in Escherichia coli. This ORF contains four conserved regions that contain 12 copper ligands (types 1, 2, and 3) present in various copper homeostasis responsible proteins. The H2O2 sensitive phenotype of the cuiD mutant indicates that cuiD may be involved in oxidative stress response.


Subject(s)
Copper/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Conserved Sequence , Copper/toxicity , Escherichia coli/genetics , Escherichia coli Proteins , Molecular Sequence Data , Mutation , Oxidation-Reduction , Oxidoreductases/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL