Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Int J Biol Sci ; 19(2): 625-640, 2023.
Article in English | MEDLINE | ID: mdl-36632458

ABSTRACT

Accumulating evidence shows that exosomes participate in cancer progression. However, the functions of cancer cell exosome-transmitted proteins are rarely studied. Previously, we reported that serglycin (SRGN) overexpression promotes invasion and metastasis of esophageal squamous cell carcinoma (ESCC) cells. Here, we investigated the paracrine effects of exosomes from SRGN-overexpressing ESCC cells (SRGN Exo) on ESCC cell invasion and tumor angiogenesis, and used mass spectrometry to identify exosomal proteins involved. Cation-dependent mannose-6-phosphate receptor (M6PR) and ephrin type-B receptor 4 (EphB4) were pronouncedly upregulated in SRGN Exo. Upregulated exosomal M6PR mediated the pro-angiogenic effects of SRGN Exo both in vitro and in vivo, while augmented exosomal EphB4 mediated the pro-invasive effect of SRGN Exo on ESCC cells in vitro. In addition, in vitro studies showed that manipulation of M6PR expression affected the viability and migration of ESCC cells. Both M6PR and EphB4 expression levels were positively correlated with that of SRGN in the serum of patients with ESCC. High level of serum M6PR was associated with poor overall survival rates. Taken together, this study presents the first proof that exosomal M6PR and EphB4 play essential roles in tumor angiogenesis and malignancy, and that serum M6PR is a novel prognostic marker for ESCC patients.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Exosomes , Humans , Cell Line, Tumor , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Exosomes/genetics , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/metabolism , Proteoglycans/genetics , Proteoglycans/metabolism
2.
Carcinogenesis ; 42(7): 995-1007, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34089582

ABSTRACT

MicroRNAs, as a group of post-transcriptional regulators, regulate multiple pathological processes including metastasis during tumor development. Here, we demonstrated the metastasis-suppressive function of microRNA (miR)-338-5p in esophageal squamous cell carcinoma (ESCC). Overexpression of miR-338-5p had inhibitory effect on invasive ability of ESCC cells and extracellular matrix degradation, whereas silencing miR-338-5p had opposite effects. Mechanistically, miR-338-5p directly targeted the 3' untranslated regions of hepatocellular growth factor receptor cMet (cMET) and epidermal growth factor receptor (EGFR). As a result, miR-338-5p inhibited the downstream signaling cascades of cMET and EGFR and repressed cMET- and EGFR-mediated ESCC cell invasion. Re-expression of cMET or EGFR in miR-338-5p overexpressing ESCC cells was sufficient to derepress ESCC cell invasion both in vitro and in vivo. We further showed that such manipulation downregulated the expression and secretion of matrix metalloproteinases 2 and 9, which resulted in impaired extracellular matrix degradation and cell invasion. Most importantly, systemic delivery of miR-338-5p mimic significantly inhibited metastasis of ESCC cells in nude mice. Taken together, our results uncovered a previously unknown mechanism through which miR-338-5p suppresses ESCC invasion and metastasis by regulating cMET/EGFR-matrix metalloproteinase 2/9 axis and highlighted the potential significance of miR-338-5p-based therapy in treating patients with metastatic ESCC.


Subject(s)
Esophageal Neoplasms/prevention & control , Esophageal Squamous Cell Carcinoma/prevention & control , Gene Expression Regulation, Neoplastic , Lung Neoplasms/prevention & control , MicroRNAs/genetics , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Apoptosis , Cell Proliferation , ErbB Receptors/antagonists & inhibitors , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Mice , Mice, Nude , MicroRNAs/administration & dosage , Neoplasm Invasiveness , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
Theranostics ; 11(6): 2722-2741, 2021.
Article in English | MEDLINE | ID: mdl-33456569

ABSTRACT

Rationale: Little is known about the roles of proteoglycans in esophageal cancer. This study aims to investigate the roles and mechanisms of serglycin (SRGN) proteoglycan in promoting metastasis of esophageal squamous cell carcinoma (ESCC). Methods: Reverse phase protein array analysis was used to identify activated signaling pathways in SRGN-overexpressing cells. Chemokine array was used to identify differentially secreted factors from SRGN-overexpressing cells. Binding between SRGN and potential interacting partners was evaluated using proximity ligation assay and co-immunoprecipitation. The glycosaminoglycan (GAG) chains of SRGN were characterized using fluorophore-assisted carbohydrate electrophoresis. Tissue microarray and serum samples were used to determine the correlation of SRGN expression with clinicopathological parameters and patient survival. Results: In vitro and in vivo experiments showed that SRGN promoted invasion and metastasis in ESCC via activating ERK pathway, stabilizing c-Myc and upregulating the secretion of matrix metalloproteinases. SRGN-knockdown suppressed tumorigenic hallmarks. These SRGN-elicited functions were carried out in an autocrine manner by inducing the secretion of midkine (MDK), which was further identified as a novel binding partner of SRGN for the formation of a SRGN/MDK/CD44 complex. In addition, SRGN interacted with MDK and matrix metalloproteinase 2 in ESCC via its GAG chains, which were mainly decorated with chondroitin sulfate comprising of ∆di-4S and ∆di-6S CS. Clinically, high expression of serum SRGN in serum of patients with ESCC was an independent prognostic marker for poor survival. Conclusions: This study provides the first evidence that elevated serum SRGN has prognostic significance in patients with ESCC, and sheds light on the molecular mechanism by which elevated circulating SRGN in cancer patients might promote cancer progression.


Subject(s)
Autocrine Communication/physiology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Proteoglycans/metabolism , Vesicular Transport Proteins/metabolism , Animals , Biomarkers, Tumor/metabolism , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement/physiology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Female , Gene Expression Regulation, Neoplastic/physiology , Humans , Hyaluronan Receptors/metabolism , Male , Matrix Metalloproteinase 2/metabolism , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Midkine/metabolism , Prognosis , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/physiology , Up-Regulation/physiology
4.
Cancer Sci ; 110(12): 3677-3688, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31646712

ABSTRACT

5-Fluorouracil (5-FU) is a chemotherapeutic agent commonly used to treat esophageal squamous cell carcinoma (ESCC), but acquisition of chemoresistance frequently occurs and the underlying mechanisms are not fully understood. We found that microRNA (miR)-338-5p was underexpressed in ESCC cells with acquired 5-FU chemoresistance. Forced expression of miR-338-5p in these cells resulted in downregulation of Id-1, and restoration of both in vitro and in vivo sensitivity to 5-FU treatment. The effects were abolished by reexpression of Id-1. In contrast, miR-338-5p knockdown induced 5-FU resistance in chemosensitive esophageal cell lines, and knockdown of both miR-338-5p and Id-1 resensitized the cells to 5-FU. In addition, miR-338-5p had suppressive effects on migration and invasion of ESCC cells. Luciferase reporter assay confirmed a direct interaction between miR-338-5p and the 3'-UTR of Id-1. We also found that miR-338-5p was significantly downregulated in tumor tissue and serum samples of patients with ESCC. Notably, low serum miR-338-5p expression level was associated with poorer survival and poor response to 5-FU/cisplatin-based neoadjuvant chemoradiotherapy. In summary, we found that miR-338-5p can modulate 5-FU chemoresistance and inhibit invasion-related functions in ESCC by negatively regulating Id-1, and that serum miR-338-5p could be a novel noninvasive prognostic and predictive biomarker in ESCC.


Subject(s)
Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Inhibitor of Differentiation Protein 1/genetics , MicroRNAs/physiology , Adult , Aged , Animals , Cell Line, Tumor , Cell Movement , Drug Resistance, Neoplasm , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Female , Fluorouracil/pharmacology , Humans , Male , Mice , MicroRNAs/blood , Middle Aged , Neoplasm Invasiveness
5.
Oncotarget ; 8(42): 71911-71923, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-29069756

ABSTRACT

Endoplasmic reticulum (ER) chaperone Prolyl 4-hydroxylase, beta polypeptide (P4HB) has previously been identified as a novel target for chemoresistance in glioblastoma multiforme (GBM). Yet its functional roles in glioma carcinogenesis remain elusive. In clinical analysis using human glioma specimens and Gene Expression Omnibus (GEO) profiles, we found that aberrant expression of P4HB was correlated with high-grade malignancy and an angiogenic phenotype in glioma. Furthermore, P4HB upregulation conferred malignant characteristics including proliferation, invasion, migration and angiogenesis in vitro, and increased tumor growth in vivo via the mitogen-activated protein kinase (MAPK) signaling pathway. Pathway analysis suggested genetic and pharmacologic inhibition of P4HB suppressed MAPK expression and its downstream targets were involved in angiogenesis and invasion. This is the first study that demonstrates the oncogenic roles of P4HB and its underlying mechanism in glioma. Since tumor invasion and Vascularisation are typical hallmarks in malignant glioma, our findings uncover a promising anti-glioma mechanism through P4HB-mediated retardation of MAPK signal transduction.

6.
Nat Commun ; 8: 14399, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28186102

ABSTRACT

Local interactions between cancer cells and stroma can produce systemic effects on distant organs to govern cancer progression. Here we show that IGF2 secreted by inhibitor of differentiation (Id1)-overexpressing oesophageal cancer cells instigates VEGFR1-positive bone marrow cells in the tumour macroenvironment to form pre-metastatic niches at distant sites by increasing VEGF secretion from cancer-associated fibroblasts. Cancer cells are then attracted to the metastatic site via the CXCL5/CXCR2 axis. Bone marrow cells transplanted from nude mice bearing Id1-overexpressing oesophageal tumours enhance tumour growth and metastasis in recipient mice, whereas systemic administration of VEGFR1 antibody abrogates these effects. Mechanistically, IGF2 regulates VEGF in fibroblasts via miR-29c in a p53-dependent manner. Analysis of patient serum samples showed that concurrent elevation of IGF2 and VEGF levels may serve as a prognostic biomarker for oesophageal cancer. These findings suggest that the Id1/IGF2/VEGF/VEGFR1 cascade plays a critical role in tumour-driven pathophysiological processes underlying cancer progression.


Subject(s)
Bone Marrow Cells/metabolism , Cancer-Associated Fibroblasts/metabolism , Esophageal Neoplasms/metabolism , Insulin-Like Growth Factor II/metabolism , Stem Cells/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Disease Progression , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/metabolism , Insulin-Like Growth Factor II/genetics , Kaplan-Meier Estimate , Mice, Knockout , Mice, Nude , Transplantation, Heterologous , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
7.
PLoS One ; 6(7): e20090, 2011.
Article in English | MEDLINE | ID: mdl-21750698

ABSTRACT

BACKGROUND: In hepatocellular carcinoma (HCC) genes predictive of survival have been found in both adjacent normal (AN) and tumor (TU) tissues. The relationships between these two sets of predictive genes and the general process of tumorigenesis and disease progression remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we have investigated HCC tumorigenesis by comparing gene expression, DNA copy number variation and survival using ∼250 AN and TU samples representing, respectively, the pre-cancer state, and the result of tumorigenesis. Genes that participate in tumorigenesis were defined using a gene-gene correlation meta-analysis procedure that compared AN versus TU tissues. Genes predictive of survival in AN (AN-survival genes) were found to be enriched in the differential gene-gene correlation gene set indicating that they directly participate in the process of tumorigenesis. Additionally the AN-survival genes were mostly not predictive after tumorigenesis in TU tissue and this transition was associated with and could largely be explained by the effect of somatic DNA copy number variation (sCNV) in cis and in trans. The data was consistent with the variance of AN-survival genes being rate-limiting steps in tumorigenesis and this was confirmed using a treatment that promotes HCC tumorigenesis that selectively altered AN-survival genes and genes differentially correlated between AN and TU. CONCLUSIONS/SIGNIFICANCE: This suggests that the process of tumor evolution involves rate-limiting steps related to the background from which the tumor evolved where these were frequently predictive of clinical outcome. Additionally treatments that alter the likelihood of tumorigenesis occurring may act by altering AN-survival genes, suggesting that the process can be manipulated. Further sCNV explains a substantial fraction of tumor specific expression and may therefore be a causal driver of tumor evolution in HCC and perhaps many solid tumor types.


Subject(s)
Carcinoma, Hepatocellular/genetics , DNA Copy Number Variations , Gene Expression Profiling , Liver Neoplasms/genetics , Liver/metabolism , Adult , Aged , Animals , Cell Line, Tumor , Chromosomes, Human, Pair 1/genetics , Female , Gene Regulatory Networks , Humans , Liver/pathology , Male , Mice , Mice, Transgenic , Middle Aged , Models, Genetic , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins c-met/genetics , Regression Analysis
8.
Mol Syst Biol ; 6: 402, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20739924

ABSTRACT

Tumorigenesis involves multistep genetic alterations. To elucidate the microRNA (miRNA)-gene interaction network in carcinogenesis, we examined their genome-wide expression profiles in 96 pairs of tumor/non-tumor tissues from hepatocellular carcinoma (HCC). Comprehensive analysis of the coordinate expression of miRNAs and mRNAs reveals that miR-122 is under-expressed in HCC and that increased expression of miR-122 seed-matched genes leads to a loss of mitochondrial metabolic function. Furthermore, the miR-122 secondary targets, which decrease in expression, are good prognostic markers for HCC. Transcriptome profiling data from additional 180 HCC and 40 liver cirrhotic patients in the same cohort were used to confirm the anti-correlation of miR-122 primary and secondary target gene sets. The HCC findings can be recapitulated in mouse liver by silencing miR-122 with antagomir treatment followed by gene-expression microarray analysis. In vitro miR-122 data further provided a direct link between induction of miR-122-controlled genes and impairment of mitochondrial metabolism. In conclusion, miR-122 regulates mitochondrial metabolism and its loss may be detrimental to sustaining critical liver function and contribute to morbidity and mortality of liver cancer patients.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks/genetics , Liver Neoplasms/genetics , MicroRNAs/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Animals , Cell Line, Tumor , Down-Regulation/genetics , Energy Metabolism/genetics , Gene Expression Profiling , Genes, Mitochondrial/genetics , Humans , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Sequence Homology, Nucleic Acid , Signal Transduction/genetics , Survival Analysis , Up-Regulation/genetics
9.
J Cell Biochem ; 111(3): 618-26, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20568120

ABSTRACT

Cadherin-17 (CDH17) belongs to the cell adhesion cadherin family with a prominent role in tumorigenesis. It is highly expressed in human hepatocellular carcinoma (HCC) and is proposed to be a biomarker and therapeutic molecule for liver malignancy. The present study aims to identify the transcription factors which interact and regulate CDH17 promoter activity that might contribute to the up-regulation of CDH17 gene in human HCC. A 1-kb upstream sequence of CDH17 gene was cloned and the promoter activity was studied by luciferase reporter assay. By bioinformatics analysis, deletion and mutation assays, and chromatin immunoprecipitation studies, we identified hepatic nuclear factor 1α (HNF1α) and caudal-related homeobox 2 (CDX2) binding sites at the proximal promoter region which modulate the CDH17 promoter activities in two HCC cell lines (Hep3B and MHCC97L). A consistent down-regulation of CDH17 and the two transcriptional activators (HNF1α and CDX2) expression was found in the liver of mouse during development, as well as in human liver cancer cells with less metastatic potential. Suppression of HNF1α and CDX2 expression by small interfering RNA (siRNA) significantly down-regulated expressions of CDH17 and its downstream target cyclin D1 and the viability of HCC cells in vitro. In summary, we identified the minimal promoter region of CDH17 that is regulated by HNF1α and CDX2 transcriptional factors. The present findings enhance our understanding on the regulatory mechanisms of CDH17 oncogene in HCC, and may shed new insights into targeting CDH17 expression as potential therapeutic intervention for cancer treatment.


Subject(s)
Cadherins/genetics , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 1-alpha/physiology , Homeodomain Proteins/physiology , Promoter Regions, Genetic , Trans-Activators/physiology , Animals , CDX2 Transcription Factor , Cell Survival/genetics , Down-Regulation/genetics , Humans , Liver/metabolism , Mice , Protein Binding , Transcription Factors/physiology , Tumor Cells, Cultured
10.
Ann Surg Oncol ; 17(9): 2518-25, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20354800

ABSTRACT

BACKGROUND: Biomarkers for accurate diagnosis of early hepatocellular carcinoma (HCC) are limited in number and clinical validation. We applied SELDI-TOF-MS ProteinChip technology to identify serum profile for distinguishing HCC and liver cirrhosis (LC) and to compare the accuracy of SELDI-TOF-MS profile and alpha-fetoprotein (AFP) level in HCC diagnosis. PATIENTS AND METHODS: Serum samples were obtained from 120 HCC and 120 LC patients for biomarker discovery and validation studies. ProteinChip technology was employed for generating SELDI-TOF proteomic features and analyzing serum proteins/peptides. RESULTS: A diagnostic model was established by CART algorithm, which is based on 5 proteomic peaks with m/z values at 3324, 3994, 4665, 4795, and 5152. In the training set, the CART algorithm could differentiate HCC from LC subjects with a sensitivity and specificity of 98% and 95%, respectively. The results were assessed in blind validation using separate cohorts of 60 HCC and 60 LC patients, with an accuracy of 83% for HCC and 92% for LC patients. The diagnostic odd ratio (DOR) indicated that SELDI-TOF proteomic signature could achieve better diagnostic performance than serum AFP level at a cutoff of 20 ng/mL (AFP(20)) (92.72 vs 9.11), particularly superior for early-stage HCC (87% vs 54%). Importantly, a combined use of both tests could enhance the detection of HCC (sensitivity, 95%; specificity, 98%; DOR, 931). CONCLUSION: Serum SELDI-TOF proteomic signature, alone or in combination with AFP marker, promises to be a good tool for early diagnosis and/screening of HCC in at-risk population with liver cirrhosis.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/diagnosis , Proteome/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , alpha-Fetoproteins/metabolism , Carcinoma, Hepatocellular/blood , Early Detection of Cancer , Female , Humans , Liver Neoplasms/blood , Male , Middle Aged , Prognosis , Protein Array Analysis , Sensitivity and Specificity
11.
BMC Cancer ; 9: 389, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-19886989

ABSTRACT

BACKGROUND: Surgical resection is one important curative treatment for hepatocellular carcinoma (HCC), but the prognosis following surgery differs substantially and such large variation is mainly unexplained. A review of the literature yields a number of clinicopathologic parameters associated with HCC prognosis. However, the results are not consistent due to lack of systemic approach to establish a prediction model incorporating all these parameters. METHODS: We conducted a retrospective analysis on the common clinicopathologic parameters from a cohort of 572 ethnic Chinese HCC patients who received curative surgery. The cases were randomly divided into training (n = 272) and validation (n = 300) sets. Each parameter was individually tested and the significant parameters were entered into a linear classifier for model building, and the prediction accuracy was assessed in the validation set RESULTS: Our findings based on the training set data reveal 6 common clinicopathologic parameters (tumor size, number of tumor nodules, tumor stage, venous infiltration status, and serum alpha-fetoprotein and total albumin levels) that were significantly associated with the overall HCC survival and disease-free survival (time to recurrence). We next built a linear classifier model by multivariate Cox regression to predict prognostic outcomes of HCC patients after curative surgery This analysis detected a considerable fraction of variance in HCC prognosis and the area under the ROC curve was about 70%. We further evaluated the model using two other protocols; leave-one-out procedure (n = 264) and independent validation (n = 300). Both were found to have excellent prediction power. The predicted score could separate patients into distinct groups with respect to survival (p-value = 1.8e-12) and disease free survival (p-value = 3.2e-7). CONCLUSION: This described model will provide valuable guidance on prognosis after curative surgery for HCC in clinical practice. The adaptive nature allows easy accommodation for future new biomarker inputs, and it may serve as the foundation for future modeling and prediction for HCC prognosis after surgical treatment.


Subject(s)
Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/mortality , Liver Neoplasms/surgery , Area Under Curve , Carcinoma, Hepatocellular/pathology , Disease-Free Survival , Humans , Kaplan-Meier Estimate , Liver Neoplasms/pathology , Neoplasm Staging , Prognosis , ROC Curve , Retrospective Studies , Treatment Outcome
12.
Cancer ; 115(19): 4576-85, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19551889

ABSTRACT

BACKGROUND: Yes-associated protein (YAP), a downstream target of the Hippo signaling pathway, was recently linked to hepatocarcinogenesis in a mouse hepatocellular carcinoma (HCC) model. The objective of the current study was to investigate the clinical significance of YAP in HCC and its prognostic values in predicting survival and tumor recurrence. METHODS: The authors collected 177 pairs of tumor and adjacent nontumor tissue from HCC patients with definitive clinicopathologic and follow-up data. YAP expression was determined by immunohistochemistry, Western blot analysis, and quantitative polymerase chain reaction. Association of YAP with each clinicopathologic feature was analyzed by Pearson chi-square test, and HCC-specific disease-free survival and overall survival by Kaplan-Meier curves and log-rank test. Multivariate Cox regression analyses of YAP in HCC were also performed. RESULTS: YAP was expressed in the majority of HCC cases (approximately 62%) and mainly accumulated in the tumor nucleus. Overexpression of YAP in HCC was significantly associated with poorer tumor differentiation (Edmonson grade; P = .021) and high serum alpha-fetoprotein (AFP) level (P < .001). Kaplan-Meier and Cox regression data indicated that YAP was an independent predictor for HCC-specific disease-free survival (hazards ratio [HR], 1.653; 95% confidence interval [95% CI], 1.081-2.528 [P = .02]) and overall survival (HR, 2.148; 95% CI, 1.255-3.677 [P = .005]). CONCLUSIONS: YAP is an independent prognostic marker for overall survival and disease-free survival times of HCC patients and clinicopathologically associated with tumor differentiation and serum AFP level. It is a potential therapeutic target for this aggressive malignancy.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/diagnosis , Nuclear Proteins/analysis , Transcription Factors/analysis , Carcinoma, Hepatocellular/mortality , Cell Cycle Proteins , Female , Humans , Liver Neoplasms/mortality , Male , Middle Aged , Prognosis , Survival Analysis
13.
Curr Med Chem ; 16(7): 906-15, 2009.
Article in English | MEDLINE | ID: mdl-19275601

ABSTRACT

Even though various contraceptive methods are widely available, the number of unwanted pregnancies is still on the rise in developing countries, pressurizing the already resource limited nations. One of the major underlying reasons is the lack of effective, low cost, and safe contraceptives for couples. During the past decade, some studies were performed using animal models to decipher if the Sertoli-germ cell junction in the testis is a target for male fertility regulation. Some of these study models were based on the use of hormones and/or chemicals to disrupt the hypothalamic-pituitary-testicular axis (e.g., androgen-based implants or pills) and others utilized a panel of chemical entities or synthetic peptides to perturb spermatogenesis either reversibly or non-reversibly. Among them, adjudin, a potential male contraceptive, is one of the compounds exerting its action on the unique adherens junctions, known as ectoplasmic specializations, in the testis. Since the testis is equipped with inter-connected cell junctions, an initial targeting of one junction type may affect the others and these accumulative effects could lead to spermatogenic arrest. This review attempts to cover an innovative theme on how male infertility can be achieved by inducing junction instability and defects in the testis, opening a new window of research for male contraceptive development. While it will still take much time and effort of intensive investigation before a product can reach the consumable market, these findings have provided hope for better family planning involving men.


Subject(s)
Contraceptive Agents, Male/pharmacology , Testis/drug effects , Testis/physiology , Tight Junctions/drug effects , Tight Junctions/physiology , Animals , Humans , Male , Models, Animal , Rats , Sertoli Cells/drug effects , Sertoli Cells/physiology , Spermatogenesis/drug effects , Spermatogenesis/physiology
14.
Mol Hum Reprod ; 14(8): 465-74, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18621766

ABSTRACT

The release of enzymes from the acrosome of the sperm head (acrosome reaction) starts the fertilization process and enables the spermatozoa to penetrate the zona pellucida of the oocytes. Defective acrosome reaction is one of the important causes of infertility in men. To investigate the molecular regulation of spermatogenesis in vivo, we used differential display reverse transcription-polymerase chain reaction to identify stage-specific genes in a retinol-supplemented vitamin-A deficiency (VAD) rat model and identified the VAD1.2 (acrosome-expressed protein 2, AEP2) gene, which was expressed strongly in the rat testis from post-natal day 32 to adult stage. The mouse VAD1.2 mRNA shared 85% and 67% sequence homology, and 74% and 38% amino acid homology, respectively, with the rat and human counterparts. VAD1.2 transcript was abundantly expressed in the rat seminiferous tubules at stage VIII-XII, and the protein was detected in the acrosome region of the round and elongated spermatids of mouse, human, monkey and pig. VAD1.2 co-localized with lectin-PNA to the acrosome region of spermatids. Interestingly, the expression of VAD1.2 protein in human testis diminished in patients with hypospermatogenesis, maturation arrest, undescended testis and Sertoli cell-only syndrome. Co-immunoprecipitation experiments followed by western blotting and mass spectrometry (MS-MS) identified syntaxin 1, beta-actin and myosin heavy chain (MHC) proteins as putative interacting partners. Taken together, the stage-specific expression of VAD1.2 in the acrosome of spermatids and the binding of VAD1.2 protein with vesicle forming (syntaxin 1) and structural (beta-actin and MHC) proteins suggest that VAD1.2 maybe involved in acrosome formation during spermiogenesis.


Subject(s)
Acrosome/metabolism , Gene Expression Profiling , Proteins/genetics , Spermatogenesis/genetics , Adolescent , Adult , Amino Acid Sequence , Animals , Blotting, Northern , Blotting, Western , Humans , Immunohistochemistry , Immunoprecipitation , In Situ Hybridization , Male , Middle Aged , Molecular Sequence Data , Proteins/chemistry , Proteins/metabolism , Rats , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Testis/metabolism
15.
Proteomics ; 8(10): 2136-49, 2008 May.
Article in English | MEDLINE | ID: mdl-18425728

ABSTRACT

To identify potential oncofetal biomarkers that distinguish hepatocellular carcinoma (HCC) from healthy liver tissues, we compared and analyzed the proteomic profiles of mouse livers at different developmental stages. Fetal (E13.5, E16.5), newborn (NB), postnatal (3-week) and adult (3-month) livers were isolated and profiled by 2-D PAGE. Statistical analysis using linear regression and false discovery rate (FDR) revealed that 361 protein spots showed significant changes. Unsupervised hierarchical tree analysis segregated the proteins into fetal, NB, and postnatal-adult clusters. Distinctive protein markers were identified by MALDI-TOF/MS and the corresponding mRNA profiles were further determined by Q-PCR. Fetal markers (hPCNA, hHSP7C, hHEM6) and postnatal-adult markers (hARGI1, hASSY, hBHMT, hFABPL) were selected for testing against a panel of seven human hepatocyte/HCC cell lines and 59 clinical specimens. The fetal proteins were found to be overexpressed in the metastatic HCC cell lines and the tumor tissues, whereas the postnatal-adult proteins were expressed in non-tumor tissues and normal hepatocytes. This "Ying-Yang" pattern, as orchestrated by distinct fetal and adult markers, is hypothesized to indicate the progressive change of the liver from a growing, less-differentiated organ into a functional metabolic center. Thus, embryogenesis and tumorigenesis share certain oncofetal markers and adult "hepatic" phenotypes are lost in HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Liver/metabolism , Proteins/analysis , Proteomics/methods , Animals , Animals, Newborn , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cluster Analysis , Electrophoresis, Gel, Two-Dimensional , Gene Expression Regulation, Neoplastic , Humans , Liver/embryology , Liver/growth & development , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Mice, Inbred BALB C , Proteins/genetics , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
16.
Oxid Med Cell Longev ; 1(1): 25-32, 2008.
Article in English | MEDLINE | ID: mdl-19794905

ABSTRACT

Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways.


Subject(s)
Intercellular Junctions/physiology , Nitric Oxide/physiology , Nucleotides, Cyclic/physiology , Spermatogenesis/physiology , Testis/physiology , Animals , Humans , Male , Nitric Oxide Synthase/physiology , Testis/cytology
17.
Adv Exp Med Biol ; 636: 172-85, 2008.
Article in English | MEDLINE | ID: mdl-19856168

ABSTRACT

Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways.


Subject(s)
Nitric Oxide/metabolism , Nucleotides, Cyclic/metabolism , Spermatogenesis/physiology , Animals , Humans , Male
18.
Liver Int ; 27(8): 1021-38, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17845530

ABSTRACT

Hepatocellular carcinoma (HCC) is a heterogeneous cancer with no promising treatment and remains one of the most prevailing and lethal malignancies in the world. Researchers in many biological areas now routinely identify and characterize protein markers by a mass spectrometry-based proteomic approach, a method that has been commonly used to discover diagnostic biomarkers for cancer detection. The proteomic research platforms span from the classical two-dimensional polyacrylamide gel electrophoresis (2-DE) to the latest Protein Chip or array technology, which are often integrated with the MALDI (matrix-assisted laser-desorption ionization), SELDI (surface-enhanced laser desorption/ionization) or tandem mass spectrometry (MS/MS). New advances on quantitative proteomic analysis (e.g. SILAC, ICAT, and ITRAQ) and multidimensional protein identification technology (MudPIT) have greatly enhanced the capability of proteomic methods to study the expressions, modifications and functions of protein markers. The present article reviews the latest proteomic development and discovery of biomarkers in HCC that may provide insights into the underlying mechanisms of hepatocarcinogenesis and the readiness of biomarkers for clinical uses.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Hepatocellular/chemistry , Liver Neoplasms/chemistry , Neoplasm Proteins/analysis , Proteomics/methods , Animals , Biomarkers, Tumor/blood , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/diagnosis , Electrophoresis, Gel, Two-Dimensional , Humans , Liver Neoplasms/blood , Liver Neoplasms/diagnosis , Neoplasm Proteins/blood , Protein Array Analysis , Proteomics/trends , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
19.
Biochem Biophys Res Commun ; 361(1): 68-73, 2007 Sep 14.
Article in English | MEDLINE | ID: mdl-17644064

ABSTRACT

Hepatocellular carcinoma (HCC) is a heterogeneous cancer and usually diagnosed at late advanced tumor stages of high lethality. The present study attempted to obtain a proteome-wide analysis of HCC in comparison with adjacent non-tumor liver tissues, in order to facilitate biomarkers' discovery and to investigate the mechanisms of HCC development. A cohort of 66 Chinese patients with HCC was included for proteomic profiling study by two-dimensional gel electrophoresis (2-DE) analysis. Artificial neural network (ANN) and decision tree (CART) data-mining methods were employed to analyze the profiling data and to delineate significant patterns and trends for discriminating HCC from non-malignant liver tissues. Protein markers were identified by tandem MS/MS. A total of 132 proteome datasets were generated by 2-DE expression profiling analysis, and each with 230 consolidated protein expression intensities. Both the data-mining algorithms successfully distinguished the HCC phenotype from other non-malignant liver samples. The detection sensitivity and specificity of ANN were 96.97% and 87.88%, while those of CART were 81.82% and 78.79%, respectively. The three biological classifiers in the CART model were identified as cytochrome b5, heat shock 70 kDa protein 8 isoform 2, and cathepsin B. The 2-DE-based proteomic profiling approach combined with the ANN or CART algorithm yielded satisfactory performance on identifying HCC and revealed potential candidate cancer biomarkers.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Hepatocellular/diagnosis , Decision Trees , Liver Neoplasms/diagnosis , Neoplasm Proteins/analysis , Neural Networks, Computer , Proteomics/methods , Algorithms , Biomarkers, Tumor/classification , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Liver , Male , Middle Aged , Neoplasm Proteins/classification , Proteome/chemistry , Tandem Mass Spectrometry
20.
J Endocrinol ; 192(1): 17-32, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17210739

ABSTRACT

Sphingomyelin synthase 2 (SMS2) is an enzyme that catalyzes the conversion of phosphatidylcholine and ceramide to sphingomyelin and diacylglycerol, and it is crucial to cellular lipid metabolism. Using the technique of subtraction hybridization, we have isolated a full-length cDNA encoding SMS2 from rat testes, which shared 93 and 87% identity at the nucleotide level with SMS2 in mice and humans respectively. A specific polyclonal antibody was prepared against a 20 amino acid peptide of NH(2)-FSWPLSWPPGCFKSSCKKYS-COOH near the C-terminus of SMS2. Studies by RT-PCR and immunoblotting have shown that the expression of SMS2 was limited to late round spermatids and elongating spermatids, but it was not detected in late elongate spermatids and Sertoli cells. Furthermore, SMS2 was shown to associate with the developing acrosome beginning in late round spermatid through elongating spermatids (but not late elongate spermatids) and the cell membrane in studies using fluorescent microscopy and immunohistochemistry. These data were further confirmed by studies using immunogold electron microscopy. The expression of SMS2 in the seminiferous epithelium is stage-specific with its highest expression detected in the acrosome region in late round spermatids from stages VIII-IX, and also in the acrosome in elongating spermatids with diminished intensity in stages X-V; however, it was not found in the acrosome in elongate spermatids in stages VI-VIII. Collectively, these results suggest that SMS2 may play a crucial role in the lipid metabolism in acrosome formation and the plasma membrane restructuring from late round spermatids to early elongating spermatids.


Subject(s)
Acrosome/enzymology , Cell Membrane/enzymology , Seminiferous Epithelium , Spermatids/enzymology , Transferases (Other Substituted Phosphate Groups)/analysis , Adherens Junctions/metabolism , Amino Acid Sequence , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/pharmacology , Base Sequence , Cells, Cultured , DNA, Complementary/analysis , Hydrazines/pharmacology , In Situ Hybridization/methods , Indazoles/pharmacology , Male , Microscopy, Fluorescence , Microscopy, Immunoelectron , Molecular Sequence Data , Open Reading Frames , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Sertoli Cells/chemistry , Spermatogenesis , Transferases (Other Substituted Phosphate Groups)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...