Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Foodborne Pathog Dis ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608218

ABSTRACT

Campylobacter jejuni represents one of the leading causes of bacterial gastroenteritis in humans and is primarily linked to chicken meat contamination. In the present study, we analyzed the virulence and survival genes, antimicrobial resistance, and the clonal distribution of 50 C. jejuni isolates obtained from various sources in 14 chicken slaughterhouses across 8 provinces in South Korea from 2019 to 2022. Furthermore, we determined their genetic relatedness to human-derived isolates registered in PubMLST using multilocus sequence typing (MLST). All isolates harbored various virulence and survival genes (flhA, cadF, cdtA, cdtC, cmeA, and sodB) out of 17 tested genes, as confirmed via polymerase chain reaction analysis. Adherence factor gene virB11 was not detected in any isolate. All isolates harbored 12 or more virulence and survival genes. Antimicrobial susceptibility testing indicated that ciprofloxacin resistance was the most prevalent (84.0%), followed by nalidixic acid (82.0%) and tetracycline (52.0%) resistance. MLST analysis of the isolates revealed 18 sequence types (STs), including four new ones. Overlapping STs between chicken slaughterhouse and human-derived isolates included ST42, ST45, ST50, ST137, ST354, and ST464. Our study identified 11 clonal complexes (CCs), with CC-21 being the most prevalent in both human and chicken slaughterhouse-derived isolates. This study provides comprehensive insights into recent C. jejuni isolates from chicken slaughterhouses, including data on quinolone resistance and virulence factors. The MLST-based genetic relatedness between isolates from humans and chicken slaughterhouses in this study suggests the potential of C. jejuni transmission from chickens to humans through the food chain. This study suggests the need for improved management practices in chicken slaughterhouses to reduce the transmission of chicken slaughterhouse-derived C. jejuni to humans.

2.
J Environ Manage ; 346: 118986, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37714086

ABSTRACT

Poultry feathers are widely discarded as waste worldwide and are considered an environmental pollutant and a reservoir of pathogenic bacteria. Therefore, developing sustainable and environmentally friendly methods for managing feather waste is one of the important environmental protection requirements. In this study, we investigated a rapid and eco-friendly method for the degradation and valorization of feather waste using keratinase-producing Pseudomonas geniculata H10, and evaluated the applicability of keratinase in environmentally hazardous chemical processes. Strain H10 completely degraded chicken feathers within 48 h by producing keratinase using them as sources of carbon, nitrogen, and sulfur. The culture contained a total of 402.8 µM amino acids, including 8 essential amino acids, which was higher than the chemical treatment. Keratinase was a serine-type metalloprotease with optimal temperature and pH of 30 °C and 9, respectively, and showed relatively high stability at 10-40 °C and pH 3-10. Keratinase was also able to degrade various insoluble keratins such as duck feathers, wool, human hair, and nails. Furthermore, keratinase exhibited more efficient depilation and wool modification than chemical treatment, as well as novel functionalities such as nematicidal and exfoliating activities. This suggests that strain H10 is a promising candidate for the efficient degradation and valorization of feather waste, as well as the improvement of current industrial processes that use hazardous chemicals.

3.
Zoonoses Public Health ; 70(5): 451-458, 2023 08.
Article in English | MEDLINE | ID: mdl-37005713

ABSTRACT

Avian chlamydiosis is an acute or chronic bacterial disease of birds. Chlamydia psittaci is the primary agent of the disease. It is also an important zoonotic pathogen. Chlamydia avium and Chlamydia gallinacea have also been recognized as potential causative agents of the disease. Clinical signs of this disease can vary in severity. Asymptomatic infections of Chlamydia have commonly been reported in various birds worldwide. In this study, we investigated the distribution of Chlamydia species in healthy psittacine birds in Korea. A total of 263 samples (pharyngeal/cloacal swabs and faeces) were collected from psittacine birds of 26 species in five zoos, five parrot farms and seven parrot cafes between 2020 and 2021. Ages of these birds had a wide range (1 month to 30 years). During sample collection, no bird showed any clinical signs indicating diseases such as chlamydiosis. Samples were tested for the presence of Chlamydia spp. using real-time PCR assays. Chlamydia spp. were detected in 168 (63.9%) samples and C. psittaci was detected in 96 (36.5%) samples. However, C. avium and C. gallinacea were not detected. There were no significant differences in the prevalence of asymptomatic infections in birds among three types of housing environments. Regarding ompA genotypes, 87 C. psittaci-positive samples had genotype A based on sequence analysis (n = 28) and genotype-specific real-time PCR (n = 59). Other positive samples were untyped (n = 9). Overall findings showed high prevalence of asymptomatic infections of C. psittaci in psittacine birds in Korea, posing a significant hazard to public health.


Subject(s)
Bird Diseases , Chlamydophila psittaci , Parrots , Psittacosis , Animals , Prevalence , Asymptomatic Infections , Bird Diseases/epidemiology , Bird Diseases/microbiology , Psittacosis/epidemiology , Psittacosis/veterinary , Psittacosis/microbiology , Republic of Korea/epidemiology
4.
Pathogens ; 12(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36678459

ABSTRACT

Mycoplasma gallisepticum (MG) can cause respiratory disease in chickens and result in serious economic losses in the chicken industry. The use of live vaccines has been a favorable option for the control of MG infection in multi-age commercial layers and broiler breeders. There are three live vaccines, including ts-11, 6/85, and F strain, that have been commonly used in various parts of the world, including South Korea. The definitive diagnosis of the infection, therefore, requires the differentiation of wild-type field strains of MG from the vaccine strains used. Thus, we aimed to develop a novel multiplex PCR assay to discriminate between vaccine strains (ts-11, 6/85, and F strain) and wild-type field strains of MG isolated from infected chickens. We designed four novel primer sets that are each specific to MG species, ts-11, 6/85, and F strain. The multiplex PCR assay using the primer sets differentially identified wild-type and vaccine strains of MG but did not detect other avian bacteria. The detection limit of this assay was 250 fg/µL of genomic DNA of each strain tested. In addition, this assay was applied to 36 MG strains isolated from chickens over the past 20 years in South Korea. As a result, the assay identified 22 wild-type strains and 14 vaccine strains. Consequently, the novel multiplex PCR assay can discriminate between vaccine and wild-type field strains of MG and could be a valuable tool for the diagnosis of MG infection in MG-vaccinated chicken flocks.

5.
J Environ Manage ; 321: 115929, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35985272

ABSTRACT

Cracking and erosion are critical factors that reduce the mechanical properties and stability of concrete structures and soil, respectively. They are recognized worldwide as severe disasters causing the collapse of many structures including stone heritage and dams, and landslides. Therefore, it is essential to propose effective and environment-friendly management methods to prevent them. Carbonatogenesis has recently received considerable attention as a reliable biological process for remediating cracks in calcareous structures, stabilizing loose soils, and sequestering CO2 in the environment. Isolating and characterizing carbonatogenic bacteria with excellent performance is crucial for applying this process to the field of environmental and civil engineering. The aim of this study was to isolate new CaCO3-precipitating bacteria and investigate various properties for their use as bioconsolidants. Furthermore, the possibility of restoring damaged structures and stabilizing loose sandy soil using isolated strain was investigated. Strain LC13 with urease and CaCO3-precipitating activity was isolated from limestone cave soil in Korea and identified as Arthrobacter sulfureus by phenotypic characterization and 16S rRNA gene analysis. Although cell growth was observed after an adaptation period at pH 11, strain LC13 grew well at pH 7-11, indicating alkali tolerance. The optimal conditions for CaCO3 precipitation were 1.0% yeast extract, 2.5% urea, 0.35% NaHCO3, and 400 mM CaCl2, with an initial pH of 6.5 at 30 °C. Under optimized conditions, maximal CaCO3 (22.92 ± 0.14 g/l) precipitated after 3 days, which was 10.8-fold higher than the value in a urea-CaCl2 medium. CaCO3 precipitation by strain LC13 was associated with an increased pH due to ureolysis and protein deamination. Using an optimized medium as a cementation solution, strain LC13 completely remediated 340-760 µm wide cracks over 3 days, and also restored the spalling of concrete surfaces. Furthermore, the sand treated with LC13 solidified with a surface strength of 14.9 kPa. Instrumental analysis confirmed that the crystals precipitated were a mixture of CaCO3 polymorphs composed of rhombohedral calcite and spherical vaterite. These results suggest that A. sulfureus LC13 may be useful for implementing sustainable biorestoration and environmental management technologies such as the in situ remediation of structural cracks and in situ prevention of soil erosion.


Subject(s)
Alkalies , Soil Erosion , Alkalies/metabolism , Bacteria/genetics , Bacteria/metabolism , Calcium Carbonate/chemistry , Calcium Chloride/metabolism , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Urea
6.
Avian Pathol ; 51(2): 164-170, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35076325

ABSTRACT

Avian chlamydiosis is an acute or chronic disease of birds after infection by Chlamydia. Although Chlamydia psittaci is the primary agent of the disease, two additional species, Chlamydia avium and Chlamydia gallinacea, have also been recognized as potential disease agents. Therefore, the diagnosis of avian chlamydiosis requires differential identification of these avian Chlamydia species. The objective of the present study was to develop a multiplex real-time polymerase chain reaction (PCR) assay to rapidly differentiate between these three species of avian Chlamydia (C. psittaci, C. avium, and C. gallinacea) as well as to detect the genus Chlamydia. Specific genetic regions of the three species were identified by comparative analysis of their genome sequences. Also, the genus-specific region was selected based on 23S rRNA sequences. PCR primers and probes specific to the genus and each species were designed and integrated in the multiplex real-time PCR assay. The assay was highly efficient (94.8-100.7%). It could detect fewer than 10 copies of each target sequence of the genus and each species. Twenty-five Chlamydia control and field DNA samples were differentially identified while 20 other bacterial strains comprising 10 bacterial genera were negative in the assay. This assay allows rapid, sensitive, and specific detection of the genus and the three species of avian Chlamydia in a single protocol that is suitable for routine diagnostic purposes in avian diagnostic laboratories.


Subject(s)
Bird Diseases , Chlamydia Infections , Chlamydia , Animals , Bird Diseases/diagnosis , Bird Diseases/microbiology , Birds/microbiology , Chlamydia/classification , Chlamydia Infections/diagnosis , Chlamydia Infections/veterinary , Chlamydophila psittaci , Real-Time Polymerase Chain Reaction/veterinary
7.
Molecules ; 26(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067627

ABSTRACT

Biomineralization, a well-known natural phenomenon associated with various microbial species, is being studied to protect and strengthen building materials such as concrete. We characterized Rhodococcus erythreus S26, a novel urease-producing bacterium exhibiting CaCO3-forming activity, and investigated its ability in repairing concrete cracks for the development of environment-friendly sealants. Strain S26 grown in solid medium formed spherical and polygonal CaCO3 crystals. The S26 cells grown in a urea-containing liquid medium caused culture fluid alkalinization and increased CaCO3 levels, indicating that ureolysis was responsible for CaCO3 formation. Urease activity and CaCO3 formation increased with incubation time, reaching a maximum of 2054 U/min/mL and 3.83 g/L, respectively, at day four. The maximum CaCO3 formation was achieved when calcium lactate was used as the calcium source, followed by calcium gluconate. Although cell growth was observed after the induction period at pH 10.5, strain S26 could grow at a wide range of pH 4-10.5, showing its high alkali tolerance. FESEM showed rhombohedral crystals of 20-60 µm in size. EDX analysis indicated the presence of calcium, carbon, and oxygen in the crystals. XRD confirmed these crystals as CaCO3 containing calcite and vaterite. Furthermore, R. erythreus S26 successfully repaired the artificially induced large cracks of 0.4-0.6 mm width.


Subject(s)
Calcium Carbonate/metabolism , Construction Materials/microbiology , Rhodococcus/metabolism , Alkalies , Biomineralization/physiology , Calcium Carbonate/chemistry , Chemical Precipitation
8.
Microorganisms ; 9(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925760

ABSTRACT

Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which is an economically important disease in the poultry industry worldwide. The present study investigated O-serogroups, phylogenetic groups, antimicrobial resistance, and the existence of virulence-associated genes (VAGs) and antimicrobial resistance genes in 125 APEC isolates between 2018 and 2019 in Korea. The phylogenetic group B2 isolates were confirmed for human-related sequence types (STs) through multi-locus sequence typing (MLST). O-serogroups O2 (12.5%) and O78 (10.3%) and phylogenetic group B1 (36.5%) and A (34.5%) were predominant in chicken and duck isolates, respectively. Out of 14 VAGs, iucD, iroN, hlyF, and iss were found significantly more in chicken isolates than duck isolates (p < 0.05). The resistance to ampicillin, ceftiofur, ceftriaxone, and gentamicin was higher in chicken isolates than duck isolates (p < 0.05). The multidrug resistance (MDR) rates of chicken and duck isolates were 77.1% and 65.5%, respectively. One isolate resistant to colistin (MIC 16 µg/mL) carried mcr-1. The B2-ST95 APEC isolates possessed more than 9 VAGs, and most of them were MDR (82.4%). This report is the first to compare the characteristics of APEC isolates from chickens and ducks in Korea and to demonstrate that B2-ST95 isolates circulating in Korea have zoonotic potential and pose a public health risk.

9.
Water Environ Res ; 87(4): 321-5, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26462076

ABSTRACT

The radiolytic degradation of antibiotic compounds, including lincomycin (LMC), sulfamethoxazole (SMX), and tetracycline (TCN), and the change of biodegradability of the radiation-treated target compounds were evaluated. As a result, the degradation of target antibiotics by hydrolysis, biodegradation, and gamma irradiation showed a compound-dependent manner. However, the biodegradability of all target compounds was enhanced by the gamma irradiation. The enhanced biodegradability after gamma irradiation (2 kGy) followed the trend of LMC (18.89%)

Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Gamma Rays , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Cosmetics/chemistry , Cosmetics/metabolism , Water/chemistry
10.
J Hazard Mater ; 295: 201-8, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25955959

ABSTRACT

Ionizing radiation technology was suggested as an alternative method to disinfection processes, such as chlorine, UV, and ozone. Although many studies have demonstrated the effectiveness of irradiation technology for microbial disinfection, there has been a lack of information on comparison studies of disinfection techniques and a regrowth of each treatment. In the present study, an ionizing radiation was investigated to inactivate microorganisms and to determine the critical dose to prevent the regrowth. As a result, it was observed that the disinfection efficiency using ionizing radiation was not affected by the seasonal changes of wastewater characteristics, such as temperature and turbidity. In terms of bacterial regrowth after disinfection, the ionizing radiation showed a significant resistance of regrowth, whereas, on-site UV treatment is influenced by the suspended solid, temperature, or precipitation. The electric power consumption was also compared for the economic feasibility of each technique at a given value of disinfection efficiency of 90% (1-log), showing 0.12, 36.80, and 96.53 Wh/(L/day) for ionizing radiation, ozone, and UV, respectively. The ionizing radiation requires two or three orders of magnitude lower power consumption than UV and ozone. Consequently, ionizing radiation can be applied as an effective and economical alternative technique to other conventional disinfection processes.


Subject(s)
Disinfection/methods , Wastewater/microbiology , Disinfection/economics , Gamma Rays , Ozone , Ultraviolet Rays
11.
J Hazard Mater ; 184(1-3): 308-312, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20832166

ABSTRACT

The enhanced effect of gamma irradiation with hydrogen peroxide (H(2)O(2)) for alachlor degradation in an aqueous solution was first investigated in this study. The combination of gamma irradiation and H(2)O(2) led to an enhanced effect, which remarkably increased the degradation efficiency of alachlor and the total organic carbon (TOC) removal. At a dose of 200 Gy, the degradation degree of the alachlor solution reached 81.7 and 99.2% under H(2)O(2) concentrations of 0 and 0.1 µM, respectively. In addition, the TOC removal efficiencies of the alachlor under initial H(2)O(2) concentrations of 0, 0.5 and 1.0 µM were 59.5, 74.8 and 83.8%, respectively, at an absorbed dose of 20 k Gy. However, for higher H(2)O(2) concentrations (greater than 1 µM), the alachlor degradation was reduced because OH radicals were scavenged by the H(2)O(2). The biodegradability of alachlor solutions prior to and after treatment by gamma irradiation was also assessed using the Closed Bottle Test (CBT). The results showed enhanced biodegradability of alachlor with increasing absorbed doses.


Subject(s)
Acetamides/chemistry , Herbicides/chemistry , Hydrogen Peroxide/chemistry , Biodegradation, Environmental , Kinetics , Solutions , Water
12.
Biodegradation ; 21(6): 1029-40, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20454836

ABSTRACT

In this study, we isolated and characterized a novel feather-degrading bacterium that shows keratinolytic, antifungal and plant growth-promoting activities. A bacterium S8 was isolated from forest soil and confirmed to belong to Bacillus subtilis by BIOLOG system and 16S rRNA gene analysis. The improved culture conditions for the production of keratinolytic protease were 0.1% (w/v) sorbitol, 0.3% (w/v) KNO(3), 0.1% (w/v) K(2)HPO(4), 0.06% (w/v) KH(2)PO(4) and 0.04% (w/v) MgCl(2)·6H(2)O (pH 8.0 and 30°C), respectively. In the improved medium containing 0.1% (w/v) feather, keratinolytic protease production was around 53.3 ± 0.3 U/ml at 4 day; this value was 10-fold higher than the yield in the basal feather medium (5.3 ± 0.1 U/ml). After cultivation for 5 days in the improved medium, intact feather was completely degraded. Feather degradation resulted in free -SH group, soluble protein and amino acids production. The concentration of free -SH group in the culture medium was 15.5 ± 0.2 µM at 4 days. Nineteen amino acids including all essential amino acids were produced in the culture medium; the concentration of total amino acid produced was 3360.4 µM. Proline (2809.9 µM), histidine (371.3 µM) and phenylalanine (172.0 µM) were the major amino acids released in the culture medium. B. subtilis S8 showed the properties related to plant growth promotion: hydrolytic enzymes, ammonification, indoleacetic acid (IAA), phosphate solubilization, and broad-spectrum antimicrobial activity. Interestingly, the strain S8 grown in the improved medium produced IAA and antifungal activity, indicating simultaneous production of keratinolytic and antifungal activities and IAA by B. subtilis S8. These results suggest that B. subtilis S8 could be not only used to improve the nutritional value of feather wastes but also is useful in situ biodegradation of feather wastes. Furthermore, it could also be a potential biofertilizer or biocontrol agent applicable to crop plant soil.


Subject(s)
Bacillus subtilis/isolation & purification , Bacillus subtilis/metabolism , Feathers/metabolism , Soil Microbiology , Trees/microbiology , Amino Acids/metabolism , Animals , Antifungal Agents/pharmacology , Bacillus subtilis/drug effects , Bacillus subtilis/enzymology , Biodegradation, Environmental/drug effects , Carbon/pharmacology , Cell Proliferation/drug effects , Chickens , Feathers/drug effects , Feathers/ultrastructure , Hydrogen-Ion Concentration/drug effects , Indoleacetic Acids/metabolism , Keratins/metabolism , Microbial Sensitivity Tests , Nitrogen/pharmacology , Peptide Hydrolases/metabolism , Sorbitol/pharmacology , Temperature , Time Factors
13.
Bioresour Technol ; 101(10): 3602-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20080401

ABSTRACT

Cost-effective production of bacterial cellulose (BC) by Acetobacter sp. V6 was investigated in shake culture using glycerol as carbon source and its structural and physical properties were determined. In medium containing 3% (w/v) glycerol, BC production was 4.98+/-0.03g/l after 7 days. This value was 3.8-fold higher than the yield in the glucose medium. FT-IR spectra revealed that all the BC samples were highly crystalline and were cellulose type capital I, Ukrainian. The crystallinity index value of the BC produced was 9% higher in the glycerol medium than in the glucose medium. Scanning electron micrographs showed that BC from the glycerol medium was more compact than that from the glucose medium. Water-holding capacity and viscosity of BC from the glycerol medium had 61.3% and 22.4% lower values than those from the glucose medium. These results suggest that glycerol could be a potential low-cost substrate for BC production by Acetobacter sp. V6, leading to the reduction in the production cost.


Subject(s)
Acetobacter/chemistry , Cellulose/chemistry , Glycerol/chemistry , Acetobacter/cytology , Culture Media , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
14.
Appl Biochem Biotechnol ; 162(2): 486-97, 2010 Sep.
Article in English | MEDLINE | ID: mdl-19730823

ABSTRACT

In order to reduce of the manufacturing cost of bacterial cellulose (BC), BC production by Acetobacter sp. V6 was investigated in shaking culture using molasses and corn steep liquor (CSL) as the sole carbon and nitrogen sources, respectively. The highest BC production was obtained with Ca3(PO4)2-treated molasses. Maximum BC yield (2.21+/-0.04 g/l) was obtained at 5% (w/v) total sugar in molasses. In improved medium containing molasses and CSL, BC production was observed in the medium after 1 day of incubation and increased rapidly thereafter with maximum yield (3.12+/-0.03 g/l) at 8 days. This value was approximately twofold higher than the yield in the complex medium. Physical properties of BC from the complex and molasses media were studied using Fourier-transform infrared (FT-IR) spectroscopy and X-ray diffractometer. By FT-IR, all the BC were found to be of cellulose type I, the same as typical native cellulose. The relative crystallinity of BC produced in the complex and molasses media were 83.02 and 67.27%, respectively. These results suggest that molasses and CSL can be useful low-cost substrates for BC production by Acetobacter sp. V6 without supplementation with expensive nitrogen complexes such as yeast extract and polypeptone, leading to the reduction in the production costs.


Subject(s)
Acetobacter/enzymology , Cellulose/metabolism , Culture Media/metabolism , Molasses , Zea mays/metabolism , Cellulose/chemistry , Cost-Benefit Analysis , Culture Media/economics , Hydrogen-Ion Concentration , Molasses/economics , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
15.
Appl Microbiol Biotechnol ; 86(3): 947-55, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20024543

ABSTRACT

We isolated and characterized novel insoluble phosphate (P)-solubilizing bacteria tolerant to environmental factors like high salt, low and high pHs, and low temperature. A bacterium M6 was isolated from a ginseng rhizospheric soil and confirmed to belong to Burkholderia vietnamiensis by BIOLOG system and 16S rRNA gene analysis. The optimal cultural conditions for the solubilization of P were 2.5% (w/v) glucose, 0.015% (w/v) urea, and 0.4% (w/v) MgCl(2).6H(2)O along with initial pH 7.0 at 35 degrees C. High-performance liquid chromatography analysis showed that B. vietnamiensis M6 produced gluconic and 2-ketogluconic acids. During the culture, the pH was reduced with increase in gluconic acid concentration and was inversely correlated with P solubilization. Insoluble P solubilization in the optimal medium was about 902 mg l(-1), which was approximately 1.6-fold higher than the yield in NBRIP medium (580 mg l(-1)). B. vietnamiensis M6 showed resistance against different environmental stresses like 10-45 degrees C, 1-5% (w/v) salt, and 2-11 pH range. The maximal concentration of soluble P produced by B. vietnamiensis M6 from Ca(3)(PO(4))(2), CaHPO(4), and hydroxyapatite was 1,039, 2,132, and 1,754 mg l(-1), respectively. However, the strain M6 produced soluble P with 20 mg l(-1) from FePO(4) after 2 days and 100 mg l(-1) from AlPO(4) after 6 days, respectively. Our results indicate that B. vietnamiensis M6 could be a potential candidate for the development of biofertilizer applicable to environmentally stressed soil.


Subject(s)
Burkholderia/metabolism , Panax/microbiology , Phosphates/metabolism , Soil Microbiology , Burkholderia/classification , Burkholderia/genetics , Burkholderia/isolation & purification , Culture Media/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gluconates/metabolism , Hydrogen-Ion Concentration , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...