Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 623(7986): 397-405, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914940

ABSTRACT

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Subject(s)
Brain , Cholesterol , Induced Pluripotent Stem Cells , Microglia , Neural Stem Cells , Neurogenesis , Organoids , Animals , Humans , Mice , Brain/cytology , Brain/metabolism , Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Microglia/cytology , Microglia/metabolism , Organoids/cytology , Organoids/metabolism , Cholesterol/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Axons , Cell Proliferation , Esters/metabolism , Lipid Droplets/metabolism
2.
Biology (Basel) ; 12(4)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37106796

ABSTRACT

Human ageing is accompanied by poor responses to infection and decreased vaccine efficacy. While the causes of this can be attributed to defects in the immune system that increase with age, it is unknown whether mitochondrial dysfunction may also contribute to these phenomena. This study aims to assess mitochondrial dysfunction in CD4+ terminal effector memory T cells re-expressing CD45RA (TEMRA) cells and other CD4+ memory T cell subtypes, which are increased in number in the elderly population, with respect to how their metabolic responses to stimulation are altered compared to CD4+ naïve T cells. In this study, we show that CD4+ TEMRA cells exhibit altered mitochondrial dynamics compared to CD4+ naïve cells and CD4+ central and effector memory cells, with a 25% reduction in OPA1 expression. CD4+ TEMRA and memory cells show increased upregulation of Glucose transporter 1 following stimulation and higher levels of mitochondrial mass compared to CD4+ naïve T cells. Additionally, TEMRA cells exhibit a decrease in mitochondrial membrane potential compared to other CD4+ memory cell subsets by up to 50%. By comparing young to aged individuals, more significant mitochondria mass and lower membrane potential were observed in CD4+ TEMRA of young individuals. In conclusion, we suggest that CD4+ TEMRA cells may be impaired with respect to their metabolic response to stimulation, possibly contributing to impaired responses to infection and vaccination.

SELECTION OF CITATIONS
SEARCH DETAIL
...