Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Small ; 20(8): e2306366, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37823672

ABSTRACT

A unique organic-inorganic hybrid network composed of inorganic nanocores (ranging from semiconductors to metallic ones) interconnected through organic molecules can be produced by crosslinking the organic ligands of colloidal inorganic nanocrystals in assemblies. This work reports that this network, which is conventionally considered an inorganic film, can swell when exposed to a solvent because of the interaction between the solvent and the organic linkage within the network. Intriguingly, this work discovers that drying the solvent of the swollen organic-inorganic hybrid network can significantly affect the morphology owing to the swelling-induced compress stress, which is widely observed in various organic network systems. This work studies the surface instability of crosslinked organic-inorganic hybrid networks swollen by various organic solvents, which led to buckling delamination. Specifically, this work investigates the effects of the i) solvent-network interaction, ii) crosslinking density of the network, and iii) thickness of the film on the delamination behavior of the crosslinked network.

2.
Adv Mater ; 35(41): e2300546, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36892995

ABSTRACT

Pixelating patterns of red, green, and blue quantum dots (QDs) is a critical challenge for realizing high-end displays with bright and vivid images for virtual, augmented, and mixed reality. Since QDs must be processed from a solution, their patterning process is completely different from the conventional techniques used in the organic light-emitting diode and liquid crystal display industries. Although innovative QD patterning technologies are being developed, photopatterning based on the light-induced chemical conversion of QD films is considered one of the most promising methods for forming micrometer-scale QD patterns that satisfy the precision and fidelity required for commercialization. Moreover, the practical impact will be significant as it directly exploits mature photolithography technologies and facilities that are widely available in the semiconductor industry. This article reviews recent progress in the effort to form QD patterns via photolithography. The review begins with a general description of the photolithography process. Subsequently, different types of photolithographical methods applicable to QD patterning are introduced, followed by recent achievements using these methods in forming high-resolution QD patterns. The paper also discusses prospects for future research directions.

3.
iScience ; 24(8): 102899, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34401677

ABSTRACT

Phosphatidylserine (PS) is an integral component of eukaryotic cell membranes and organelles. The Drosophila genome contains a single PS synthase (PSS)-encoding gene (Pss) homologous to mammalian PSSs. Flies with Pss loss-of-function alleles show a reduced life span, increased bang sensitivity, locomotor defects, and vacuolated brain, which are the signs associated with neurodegeneration. We observed defective mitochondria in mutant adult brain, as well as elevated production of reactive oxygen species, and an increase in autophagy and apoptotic cell death. Intriguingly, glial-specific knockdown or overexpression of Pss alters synaptogenesis and axonal growth in the larval stage, causes developmental arrest in pupal stages, and neurodegeneration in adults. This is not observed with pan-neuronal up- or down-regulation. These findings suggest that precisely regulated expression of Pss in glia is essential for the development and maintenance of brain function. We propose a mechanism that underlies these neurodegenerative phenotypes triggered by defective PS metabolism.

4.
Cancers (Basel) ; 13(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200450

ABSTRACT

Breast cancer is one of the most common malignant diseases worldwide. Astrocyte elevated gene-1 (AEG-1) is upregulated in breast cancer and regulates breast cancer cell proliferation and invasion. However, the molecular mechanisms by which AEG-1 promotes breast cancer have yet to be fully elucidated. In order to delineate the function of AEG-1 in breast cancer development, we mapped the AEG-1 interactome via affinity purification followed by LC-MS/MS. We identified nucleolin (NCL) as a novel AEG-1 interacting protein, and co-immunoprecipitation experiments validated the interaction between AEG-1 and NCL in breast cancer cells. The silencing of NCL markedly reduced not only migration/invasion, but also the proliferation induced by the ectopic expression of AEG-1. Further, we found that the ectopic expression of AEG-1 induced the tyrosine phosphorylation of c-Met, and NCL knockdown markedly reduced this AEG-1 mediated phosphorylation. Taken together, our report identifies NCL as a novel mediator of the oncogenic function of AEG-1, and suggests that c-Met could be associated with the oncogenic function of the AEG-1-NCL complex in the context of breast cancer.

5.
Int J Mol Sci ; 21(23)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291786

ABSTRACT

Dasatinib is a multi-target kinase inhibitor, whose targets include BCR-ABL, SRC family kinases, and various cancer kinases. The elevated SRC activity in gastric cancer (GC) has prompted the need for the therapeutic application of dasatinib in GC. We observed that the efficacy of dasatinib varied with the GC cell lines. The differential effect of dasatinib was not correlated with the basal SRC activity of each cell line. Moreover, the GC cell lines showing the strong antitumor effects of dasatinib were refractory to other SRC inhibitors, i.e., bosutinib and saracatinib, suggesting that unexpected dasatinib's targets could exist. To profile the targets of dasatinib in GC, we performed activity-based protein profiling (ABPP) via mass spectrometry using a desthiobiotin-ATP probe. We identified 29 and 18 kinases as potential targets in dasatinib-sensitive (SNU-216, MKN-1) and -resistant (SNU-484, SNU-601) cell lines, respectively. The protein-protein interaction mapping of the differential drug targets in dasatinib-sensitive and -resistant GC using the STRING database suggested that dasatinib could target cellular energy homeostasis in the drug-sensitive GC. RNAi screening for identified targets indicated p90RSK could be a novel dasatinib target, which is important for maintaining the viability and motility of GC cells. Further functional validation of dasatinib off-target actions will provide more effective therapeutic options for GC.


Subject(s)
Biomarkers, Tumor/metabolism , Dasatinib/pharmacology , Protein Kinase Inhibitors/pharmacology , Proteome , Proteomics , Stomach Neoplasms/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Chromatography, Liquid , Dasatinib/therapeutic use , Humans , Molecular Targeted Therapy , Phenotype , Protein Kinase Inhibitors/therapeutic use , Proteomics/methods , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Tandem Mass Spectrometry
6.
J Nanosci Nanotechnol ; 18(9): 6270-6273, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29677779

ABSTRACT

Microscale-pyramidal-structure-arrayed patterned silicon membranes are manufactured using semiconductor processes and potassium hydroxide (KOH) etching techniques for filter applications. The silicon nitride on silicon on the insulator wafer functions as a masking layer, and the roughness of the silicon (100) plane strongly depends on the etching temperature and KOH concentration. To fabricate the membrane filter, a series of dry and wet etching using 45 wt% KOH solutions at the constant temperature of 70 °C was performed. With the dry and wet etching, micro-pyramidal arrays with 300 µm top and 16-20 µm bottom opening sizes were created. The morphological structures were analyzed using scanning electron microscopy. The manufactured membranes were tested as optical directional filters and particle filters.

7.
Sci Rep ; 7: 46660, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28429793

ABSTRACT

Using doubly-clamped silicon (Si) microbeam resonators, we demonstrate sub-attogram per Hertz (ag/Hz) mass sensitivity, which is extremely high sensitivity achieved by micro-scale MEMS mass sensors. We also characterize unusual buckling phenomena of the resonators. The thin-film based resonator is composed of a Si microbeam surrounded by silicon nitride (SiN) anchors, which significantly improve performance by providing fixation on the microbeam and stabilizing oscillating motion. Here, we introduce two fabrication techniques to further improve the mass sensitivity. First, we minimize surface stress by depositing a sacrificial SiN layer, which prevents damage on the Si microbeam. Second, we modify anchor structure to find optimal design that allows the microbeam to oscillate in quasi-one dimensional mode while achieving high quality factor. Mass loading is conducted by depositing Au/Ti thin films on the local area of the microbeam surface. Using sequential mass loading, we test effects of changing beam dimensions, position of mass loading, and distribution of a metal film on the mass sensitivity. In addition, we demonstrate that microbeams suffer local micro-buckling and global buckling by excessive mass loading, which are induced by two different mechanisms. We also find that the critical buckling length is increased by additional support from the anchors.

8.
Med Biol Eng Comput ; 54(6): 915-26, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26753778

ABSTRACT

A novel approach for assisting bidirectional communication between people of normal hearing and hearing-impaired is presented. While the existing hearing-impaired assistive devices such as hearing aids and cochlear implants are vulnerable in extreme noise conditions or post-surgery side effects, the proposed concept is an alternative approach wherein spoken dialogue is achieved by means of employing a robust speech recognition technique which takes into consideration of noisy environmental factors without any attachment into human body. The proposed system is a portable device with an acoustic beamformer for directional noise reduction and capable of performing speech-to-text transcription function, which adopts a keyword spotting method. It is also equipped with an optimized user interface for hearing-impaired people, rendering intuitive and natural device usage with diverse domain contexts. The relevant experimental results confirm that the proposed interface design is feasible for realizing an effective and efficient intelligent agent for hearing-impaired.


Subject(s)
Hearing Aids , Hearing Loss/therapy , Speech , Algorithms , Humans , User-Computer Interface
9.
J Nanosci Nanotechnol ; 12(7): 5678-82, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966632

ABSTRACT

We investigated the effects of Si nanowire (SiNW) dimensions and their surface modifications on the pH-dependent electronic transport characteristics of SiNW Electrolyte-insulator-Semiconductor Field-Effect Transistors (EISFETs). The threshold voltages, Vth's, of all devices were extracted from the Id-Vg characteristics with Vg applied to the reference electrode immersed in different pH solutions, and their pH-dependences were analyzed for various devices. We found that our devices produce the systematic pH-dependence of Vth with respect to the SiNW's length and show significant changes in a linear pH region and a pH sensitivity upon the Si surface modifications. Particularly in the case of the APTES-treated surface, the linear variation was observed in the wide region of pH = 2 to approximately 11 with the sensitivity of 54.7 +/- 0.6 mV/pH. Also we compared our data to a theoretical result based on the Gouy-Chapmam-Stern-Graham model and found a reasonable agreement between them.

10.
J Nanosci Nanotechnol ; 12(7): 5799-803, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966657

ABSTRACT

We investigated the transport properties of a lateral PtSi/n/n(+)-Si Schottky diode prepared on an n-type silicon-on-insulator (SOI) wafer with a special attention on the bipolar transport and the surface effect. With applying a back-gate bias changing from +18 V to -18 V, the unipolar transport behavior switched over to the bipolar one, where an enhanced surface recombination rate due to a high surface-to-volume ratio produced a current density approximately 3 x 10(3) A/cm2 for 2 V bias through a 40 nm-thick and 18 microm-long nanoribbon. The recombination time was estimated to be approximately 1 micros from independent CV measurements, which is much smaller value than that of a bulk. The local Fermi energy level for electrons at the channel center was monitored by an additional voltage probe during each I(D)-V(D) measurement and it revealed the intricate nature of the bipolar transport manifested by the huge asymmetrical hysteretic behavior on a drain bias cycle which is attributed to the charge storage effect and asymmetrical junction profiles.

11.
Opt Express ; 19(22): 21652-7, 2011 Oct 24.
Article in English | MEDLINE | ID: mdl-22109014

ABSTRACT

Using a planar metamaterial, which consists of two silver strips, we theoretically demonstrate the plasmonic electromagnetically-induced transparency (EIT)-like spectral response at optical frequencies. The two silver strips serve as the bright modes, and are excited strongly by the incident wave. Based on the weak hybridization between the two bright modes, a highly-dispersive plasmonic EIT-like spectral response appears in our scheme. Moreover, the group index is higher than that of another scheme which utilizes the strong coupling between the bright and dark modes.

SELECTION OF CITATIONS
SEARCH DETAIL
...