Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(11): e21258, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37928034

ABSTRACT

This study investigated the efficiency of hydrochar derived from hydrothermal fulvification of wheat straw in adsorbing malachite green (MG) dye. The characterizations of the hydrochar samples were determined using various analytical techniques like SEM, EDX, FTIR, X-ray spectroscopy, BET surface area analysis, ICP-OES for the determination of inorganic elements, elemental analysis through ultimate analysis, and HPLC for the content of sugars, organic acids, and aromatics. Adsorption experiments demonstrated that hydrochar exhibited superior removal efficiency compared to feedstock. The removal efficiency of 91 % was obtained when a hydrochar dosage of 2 g L-1 was used for 20 mg L-1 of dye concentration in a period of 90 min. The results showed that the study data followed the Freundlich isotherms as well as the pseudo-second order kinetic model. Moreover, the determined activation energy of 7.9 kJ mol-1 indicated that the MG adsorption was a physical and endothermic process that increased at elevated temperatures. The study also employed an artificial neural network (ANN), a machine learning approach that achieved remarkable R2 (0.98 and 0.99) for training and validation dataset, indicating high accuracy in simulating MG adsorption by hydrochar. The model's sensitivity analysis demonstrated that the adsorbent dosage exerted the most substantial influence on the adsorption process, with MG concentration, pH, and time following in decreasing order of impact.

2.
Sci Rep ; 13(1): 4676, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949218

ABSTRACT

The DAMA/LIBRA collaboration has reported the observation of an annual modulation in the event rate that has been attributed to dark matter interactions over the last two decades. However, even though tremendous efforts to detect similar dark matter interactions were pursued, no definitive evidence has been observed to corroborate the DAMA/LIBRA signal. Many studies assuming various dark matter models have attempted to reconcile DAMA/LIBRA's modulation signals and null results from other experiments, however no clear conclusion can be drawn. Apart from the dark matter hypothesis, several studies have examined the possibility that the modulation is induced by variations in detector's environment or their specific analysis methods. In particular, a recent study presents a possible cause of the annual modulation from an analysis method adopted by the DAMA/LIBRA experiment in which the observed annual modulation could be reproduced by a slowly varying time-dependent background. Here, we study the COSINE-100 data using an analysis method similar to the one adopted by the DAMA/LIBRA experiment and observe a significant annual modulation, however the modulation phase is almost opposite to that of the DAMA/LIBRA data. Assuming the same background composition for COSINE-100 and DAMA/LIBRA, simulated experiments for the DAMA/LIBRA without dark matter signals also provide significant annual modulation with an amplitude similar to DAMA/LIBRA with opposite phase. Even though this observation does not directly explain the DAMA/LIBRA results directly, this interesting phenomenon motivates more profound studies of the time-dependent DAMA/LIBRA background data.

3.
Environ Technol ; 44(8): 1099-1113, 2023 Mar.
Article in English | MEDLINE | ID: mdl-34649467

ABSTRACT

The contamination of the aquatic environment with emerging micro-pollutants is a serious global concern. The aim of this investigation was to synthesize novel functionalized material (BNAPTES) precursor to natural bentonite in a single pot facile synthetic route. The material was utilized for efficient and selective removal of tetracycline (TC) and triclosan (TCS) in aqueous wastes. The grafting of silane was confirmed with the FT-IR (Fourier Transform Infra-Red) analysis and the EDX (Energy Dispersive X-ray) analysis showed the incorporation of amino group with the bentonite. The structural changes of clay due to silane grafting were studied with the help of XRD (X-ray Diffraction) and BET (Brunner-Emmett-Teller) surface area analyses. Batch adsorption studies showed that functionalized clay significantly increased the selectivity and adsorption capacity of bentonite for TC and TCS. The Langmuir monolayer adsorption capacity was found to be 15.36 and 17.15 mg/g for TC and TCS, respectively. The rapid uptake of TC and TCS by functionalized material followed pseudo-second-rate kinetics. Further, a total of 78% of TC and 73% of TCS were removed within 5 min of contact and the adsorption equilibrium was achieved within 120  min. The influence of background electrolytes and co-existing ions indicated that TC and TCS were selective towards BNAPTES. The loading capacities of the column packed with BNAPTES were found to be 56.00 and 44.42 mg/g for TC and TCS, respectively. Further, BNAPTES was found efficient even in real water treatment since the attenuation of TC and TCS was not affected significantly in the real water matrix.


Subject(s)
Triclosan , Water Pollutants, Chemical , Bentonite/chemistry , Thermodynamics , Clay , Spectroscopy, Fourier Transform Infrared , Decontamination , Silanes , Anti-Bacterial Agents , Tetracycline , Triclosan/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/analysis
4.
Environ Res ; 210: 112914, 2022 07.
Article in English | MEDLINE | ID: mdl-35182591

ABSTRACT

Contamination of the aquatic environment with pharmaceutical compounds is a serious environmental concern. The present investigation aims to utilize the Ce3+/TiO2 thin film catalyst to remove of potential antibiotics (amoxicillin and tetracycline) using the less harmful UV-A radiations. Reduced cerium ion-doped TiO2 is obtained by a simple one-step facile template method using polyethylene glycol as the templating agent. The synthesized catalysts Ce3+@TiO2 (non-template) and Ce3+@TiO2(T) (template) were characterized by spectroscopic methods. The XPS reaffirms the reduced Ce3+ dispersed within the titania network, and the AFM showed the surface roughness of the thin films. Detailed physicochemical analyses were conducted to deduce the degradation mechanism, and repeated use of the thin film photocatalyst showed enhanced stability. Significant mineralization of the antibiotics indicates the potential applicability of the photocatalytic catalyst. Furthermore, the presence of Ce3+ significantly restricted the recombination of electron/hole pairs in the photo-excited TiO2 semiconductor and showed enhanced photocatalytic degradation of the antibiotics proceeded predominantly through the •OH.


Subject(s)
Amoxicillin , Titanium , Anti-Bacterial Agents , Catalysis , Tetracycline , Titanium/chemistry
5.
Sci Adv ; 7(46): eabk2699, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34757778

ABSTRACT

We present new constraints on dark matter interactions using 1.7 years of COSINE-100 data. The COSINE-100 experiment, consisting of 106 kg of tallium-doped sodium iodide [NaI(Tl)] target material, is aimed to test DAMA's claim of dark matter observation using the same NaI(Tl) detectors. Improved event selection requirements, a more precise understanding of the detector background, and the use of a larger dataset considerably enhance the COSINE-100 sensitivity for dark matter detection. No signal consistent with the dark matter interaction is identified and rules out model-dependent dark matter interpretations of the DAMA signals in the specific context of standard halo model with the same NaI(Tl) target for various interaction hypotheses.

6.
PeerJ Comput Sci ; 7: e567, 2021.
Article in English | MEDLINE | ID: mdl-34141892

ABSTRACT

As the necessity of wireless charging to support the popularization of electric vehicles (EVs) emerges, the development of a wireless power transfer (WPT) system for EV wireless charging is rapidly progressing. The WPT system requires alignment between the transmitter coils installed on the parking lot floor and the receiver coils in the vehicle. To automatically align the two sets of coils, the WPT system needs a localization technology that can precisely estimate the vehicle's pose in real time. This paper proposes a novel short-range precise localization method based on ultrawideband (UWB) modules for application to WPT systems. The UWB module is widely used as a localization sensor because it has a high accuracy while using low power. In this paper, the minimum number of UWB modules consisting of two UWB anchors and two UWB tags that can determine the vehicle's pose is derived through mathematical analysis. The proposed localization algorithm determines the vehicle's initial pose by globally optimizing the collected UWB distance measurements and estimates the vehicle's pose by fusing the vehicle's wheel odometry data and the UWB distance measurements. To verify the performance of the proposed UWB-based localization method, we perform various simulations and real vehicle-based experiments.

7.
Environ Sci Pollut Res Int ; 28(29): 38809-38816, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33740190

ABSTRACT

In this study, copper oxide nanoparticles (CuONPs) were prepared by a simple chemical method and then characterized by scanning electron microscope (SEM). A novel electrochemical sensor for hydrogen peroxide (H2O2) analysis was prepared by immobilizing copper oxide nanoparticles and polyalizarin yellow R (PYAR) on bare glassy carbon electrode (PAYR/CuONPs/GCE). The electrocatalytical behavior of the proposed electrochemical sensor was also studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Based on the results, the PAYR/CuONP nanocomposite had significant electrocatalytic oxidation and reduction properties for the detection and determination of H2O2. Some parameters such as linear range, sensitivity, and detection limit for reduction peak were obtained as 0.1-140 µM, 1.4154 µA cm-2 µM-1, and 0.03 µM, respectively, by the DPV technique. Some advantages of this electrode were having widespread linear range, low detection limit, and, most importantly, ability in simultaneous oxidation and reduction of H2O2 at two applied potentials.


Subject(s)
Graphite , Nanocomposites , Nanoparticles , Copper , Electrochemical Techniques , Electrodes , Hydrogen Peroxide , Limit of Detection
8.
Environ Sci Pollut Res Int ; 28(7): 8373-8383, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33058080

ABSTRACT

The present communication aims to obtain a novel Ce3+/TiO2 thin film in a single step facile method using the in situ template process. The material was characterized by the XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), TEM (transmission electron microscope), and AFM (atomic force microscope) analyses. The thin film catalyst was intended to introduce in the degradation of one of potential dye Alizarin Yellow from aqueous solutions using the UV-A radiations. The mechanisms of degradation along with the physicochemical parametric studies were conducted extensively. The mineralization of pollutant and the replicate use of catalysts further enhance the applicability of present communication. Additionally, the real matrix treatment was conducted to simulate the treatment process.


Subject(s)
Anthraquinones , Titanium , Catalysis
9.
Environ Monit Assess ; 192(8): 556, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32740727

ABSTRACT

The original version of this article unfortunately contained an error in the affiliation section and missing acknowledgment statement.

10.
Int J Biol Macromol ; 164: 3145-3154, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32827615

ABSTRACT

The toxic heavy metals contamination in water bodies is one of the major concerns in many countries. Copper and lead are the two common toxic metals present in aquatic environments due to their extensive usage in various industries for diverse applications. The present study deals with the removal of these two toxic heavy metal ions using activated bentonite-alginate (ABn-AG) composite beads which are easily separated and recovered after adsorption reaction. Composite beads were prepared by adapting the ionic gelation method and the materials; i.e., raw bentonite (BnR), activated bentonite (ABn) and ABn-AG were characterized by XRD, BET surface area, TGA-DTA, FT-IR, SEM analyses. The nitrogen adsorption-desorption isotherm obtained for the materials were the type IV isotherm with characteristics H3 hysteresis loops indicating the presence of mesopores with slit-shaped pores. Batch experiments showed that reasonably high percent removal was achieved even at highly acidic conditions, i.e., 58% of Cu2+and 77% of Pb2+were removed at pH 2.0. The removal was fast during the initial contact time and the adsorption data obtained at various contact time were fit well to the pseudo-second order kinetic model. The maximum sorption capacity for Cu2+ was found to be 17.30 mg/g whereas Pb2+ was found to be 107.52 mg/g. The presence of MgCl2, NaCl and KCl did not cause significant influence on the removal of Cu2+ and Pb2+ using ABn-AG. Binary adsorption study suggested that Cu2+ and Pb2+ were removed through different binding sites present in ABn-AG. Reusability test showed that removal of Cu2+ and Pb2+ decreased by 10% only after the same material was reused for 5 times indicating that ABn-AG is a highly robust material and can be reuse for several times without losing its efficiency. Thus, this study suggested that ABn-AG composite beads can be employed as an efficient adsorbent for the removal of Cu2+ and Pb2+ from aqueous waste.


Subject(s)
Alginates/chemistry , Bentonite/chemistry , Copper/chemistry , Lead/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Hydrogen-Ion Concentration , Ions , Nitric Acid/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
11.
Environ Monit Assess ; 192(8): 521, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32671486

ABSTRACT

In order to investigate the degree of contamination of heavy metals (As, Cd, Cr, Cu, Fe, Pb, and Ni) in the Aqyazi River in Iran, sediment samples were collected from the river receiving wastewater from an iron-manufacturing plant. For this study, contamination indices, geoaccumulation index (Igeo), contamination factor (CF), and pollution load index (PLI), were used to assess contamination by the heavy metals. The results of the Igeo indicated that the sediments were moderately contaminated by Cu and strongly to extremely contaminated by Cd. Based on spatial distribution of concentrations and the Igeo, mining activity was the source of Cu and Cd in the Aqyazi River. Furthermore, the elevated Igeo of Cd at upmost northern station was not influenced by the mining activity, suggesting that there may be another upstream anthropogenic source of Cd. The CF values indicated the same trend as the Igeo. The PLI was calculated using all the metals analyzed in this study, and displayed that the sediments were not polluted. However, the PLI was re-calculated using only Cu and Cd and indicated that the sediments were polluted. Our results suggest further studies to trace another source of Cd upstream of the Aqyazi River and to investigate influence of the river waters on accumulation of heavy metals in soils and vegetables downstream.


Subject(s)
Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Geologic Sediments , Iran , Iron , Mining , Risk Assessment
12.
Environ Technol ; 41(26): 3500-3514, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31074687

ABSTRACT

Nanocomposite mesoporous Ag0(NPs)/TiO2 thin film materials were synthesized and assessed for its efficient application in the elimination of potentially important drug triclosan from aqueous solutions. A template synthesis using the polyethylene glycol was enabled to obtain Ag0(NPs)/TiO2 nanocomposite materials where zerovalent Ag was in situ doped to the titania network. The nanocomposite materials were characterized by the scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscope (TEM), EDX elemental mapping, X-ray diffraction (XRD) analyses and Brunauer-Emmett-Teller (BET) methods. Further, the diffuse reflectance spectroscopy (DRS) was introduced to estimate the band gap of these solids. The thin film materials were subjected to the remediation of water contaminated with triclosan using the UV-A light. The oxidative elimination of triclosan was demonstrated as a function of pH, concentration of triclosan and presence of several co-existing ions. Increase in pH (4.0-10.0) and triclosan concentrations (0.5-15.0 mg/L) had decreased significantly the percentage degradation of triclosan. The pseudo-first-order kinetics was shown in the degradation of triclosan and rate constant was significantly decreased with the increase in pollutant concentration (0.5-15.0 mg/L) and pH (4.0-10.0). The 1000 times presence of scavengers showed that •OH were, predominantly, caused the oxidation of triclosan. Moreover, multiple application of nanocomposite Ag0(NPs)/TiO2(B) revealed that the thin film was fairly intact since the photocatalytic efficiency of triclosan removal was almost unaffected.


Subject(s)
Nanocomposites , Triclosan , Water Pollutants, Chemical , Catalysis , Silver , Titanium
13.
Water Sci Technol ; 79(2): 375-385, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30865609

ABSTRACT

In this study, photocatalysis of phenol was studied using Cd-ZnO nanorods, which were synthesized by a hydrothermal method. The Cd-ZnO photocatalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, and Fourier transform infrared (FT-IR) and UV-Vis spectroscopy. XRD patterns exhibit diffraction peaks indexed to the hexagonal wurtzite structures with the P63mc space group. SEM images showed that the average size of the Cd-ZnO nanorods was about 90 nm. Moreover, the nanorods were not agglomerated and were well-dispersed in the aqueous medium. FT-IR analysis confirmed that a surface modifier (n-butylamine) did not add any functional groups onto the Cd-ZnO nanorods. The dopant used in this study showed reduction of the bandgap energy between valence and conduction of the photocatalyst. In addition, effect of various operational parameters including type of photocatalyst, pH, initial concentration of phenol, amount of photocatalyst, and irradiation time on the photocatalytic degradation of phenol has been investigated. The highest phenol removal was achieved using 1% Cd-ZnO for 20 mg/l phenol at pH 7, 3 g/l photocatalyst, 120 min contact time, and 0.01 mole H2O2.


Subject(s)
Cadmium/chemistry , Models, Chemical , Phenol/chemistry , Zinc Oxide/chemistry , Catalysis , Hydrogen Peroxide , Photochemical Processes , Spectroscopy, Fourier Transform Infrared
14.
Environ Sci Pollut Res Int ; 25(20): 20125-20140, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29748801

ABSTRACT

The present communication specifically aims to synthesize novel nanocomposite material Au NPs/TiO2 in a simple template process using the polyethylene glycol as filler media. The thin film of the nanocomposite material was characterized by the advanced analytical tools. The surface morphology was obtained by the scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images of solids. Similarly, the surface topography and roughness of solid were obtained by the atomic force microscopic (AFM) image of thin film. X-ray diffraction (XRD) data enabled to confirm that the TiO2 was predominantly present with its anatase phase. The specific surface area and pore size of the solid were obtained using the N2 adsorption/desorption data. Nanocomposite Au NP/TiO2 thin film was employed in the photocatalytic removal of sulfamethoxazole and triclosan from aqueous solutions using less harmful UV-A light (λmax = 330 nm). Various physicochemical parametric studies enabled to deduce the mechanism involved in the degradation process. The degradation kinetics as a function of pH (pH 4.0-10.0) and micro-pollutant concentrations (0.5-15.0 mg/L) was extensively studied. The mineralization of these pollutants was obtained using the non-purgeable organic carbon (NPOC) data. The stability of thin film was assessed by the repeated operations, and presence of several co-existing ions simulates the studies to real matrix treatment. Further, the presence of scavengers enabled to pin point the radical-induced degradation of sulfamethoxazole and triclosan from aqueous solutions.


Subject(s)
Environmental Restoration and Remediation/methods , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/prevention & control , Anti-Infective Agents/analysis , Gold/chemistry , Sulfamethoxazole/analysis , Titanium/chemistry , Triclosan/analysis
15.
J Environ Manage ; 220: 96-108, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29775822

ABSTRACT

The aim of this communication is to synthesize novel Nanocomposite thin film materials (Ag0(NP)/TiO2) using the template process. Surface morphology of materials was obtained by the Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analyses. The presence of doped Ag-nanoparticles was confirmed by the TEM images along with the SEM-EDX analyses. The Atomic Force Microscopic images were demonstrated the surface roughness and thickness of Nanocomposite thin films. X-ray diffraction analysis confirmed that TiO2 was predominantly present to its anatase mineral phase. The Fourier Transform Infra-red analysis conducted to obtain the functional groups present with the solid. The specific surface area and pore sizes of Nanocomposites were obtained by the BET (Brunauer, Emmett, and Teller) analysis. Further, the Nanocomposite thin film photocatalysts were successfully employed in the degradation of emerging micro-pollutants viz., the antibiotics tetracycline and sulfamethoxazole from aqueous solutions using less harmful UV-A light (λmax 330 nm). The effect of solution pH (pH 4.0-8.0) and pollutant concentrations (1.0 mg/L-20.0 mg/L (for tetracycline) and (0.5 mg/L-15.0 mg/L (for sulfamethoxazole)) was extensively studied in the photocatalytic removal of these antibiotics. A significant decrease in percentage of non-purgeable organic carbon removal indicated that the micro-pollutants was substantially mineralized by the photocatalytic treatment. The stability of thin film was assessed by the repeated use of Nanocomposite thin films and results were indicated that the degradation of tetracycline or sulfamethoxazole was almost unaffected at least for six cycles of photocatalytic operations. The presence of several cations and anions in the degradation of these antibiotics was studied. Additionally, the presence of 2-propanol and EDTA inhibited significantly the degradation of these micro-pollutants i.e., the percentage of degradation was decreased by 31.8 and 24.2% (for tetracycline) and 42.8 and 39.9% (for sulfamethoxazole), respectively. This indicated that the degradation of tetracycline or sulfamethoxazole was predominantly proceeded by the OH radicals; generated at the valance and conduction band of semiconductor. Similarly, the presence of sodium azide inhibited the percentage removal of these antibiotics.


Subject(s)
Nanocomposites , Titanium , Water Pollutants, Chemical , Catalysis , Sulfamethoxazole
16.
Int J Biol Macromol ; 114: 1315-1324, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29630958

ABSTRACT

The present study deals with the preparation and characterization of mesoporous synthetic hectorite (MSH) clay which further encapsulated with Na-alginate for the preparation of mesoporous synthetic hectorite-alginate beads (MSH-AB) where Ca2+ act as a cross-linking agent. The detail characterization of MSH and MSH-AB were carried out by various physicochemical techniques. The thermogravimetric analysis study showed better thermal stability results for MSH-AB. The textural properties results of MSH and MSH-AB showed the high surface area 468, 205m2/g, and the pore volume of 0.34, 0.29cm3/g respectively. The applicability of powder MSH and MSH-AB in wet (W) and dry (D) forms were assessed for the removal of cationic dye, methylene blue (MB) by optimizing various batch adsorption parameters. The Langmuir monolayer adsorption capacity obtained for MSH-AB-W showed significant high adsorption efficacy (i.e., 785.45mgMB/g) compared to the MSH-AB-D (357.14mgMB/g) and powder MSH materials (196.00mgMB/g). The adsorption isotherm studies showed that the Langmuir isotherm model was best suitable for MSH, whereas the Freundlich model was utilised to describe the adsorption behavior of organized hydrogel composite beads. The pseudo-second-order kinetics model was observed best for MB sorption onto MSH, whereas pseudo-first order useful to describe the kinetic behavior of MSH-AB. The regeneration experimental results revealed that MSH-AB-W could be recycled more than six cycles with high MB removal efficiency. Furthermore, the adsorption property of the MSH-AB-W was examined for the binary mixture of MB with other dye solutions such as Methyl Red (MR), Methyl Orange (MO), Alizarine Yellow (AY), and Remazol Brilliant Blue (RBB) to evaluate the selective adsorption efficiency. The MSH composite beads were found potentially suitable as an efficient, selective and recyclable adsorbent for the removal of MB from the aqueous solutions.


Subject(s)
Alginates/chemistry , Aluminum Silicates/chemistry , Methylene Blue/chemistry , Silicates/chemistry , Adsorption , Clay , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Methylene Blue/isolation & purification , Porosity
17.
J Korean Med Sci ; 33(4): e26, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29318793

ABSTRACT

BACKGROUND: This study aimed to evaluate the adhesion of Acanthamoeba trophozoites on cosmetic contact lenses (CLs) with and without CL care multipurpose solution (MPS) treatment. METHODS: Acanthamoeba lugdunensis L3a trophozoites were inoculated onto disks trimmed from CLs: 1-day Acuvue moist, 1-day Acuvue define, Acuvue 2, and Acuvue 2 define. After 18-hour inoculation, the number of adherent trophozoites was counted under phase contrast microscopy. The effects of MPS, Opti-Free Express, soaking CLs for 6 hours, on Acanthamoeba adhesion were analyzed. Scanning electron microscopic examination was performed for assessment of Acanthamoeba attached on the lens surface. RESULTS: Acanthamoeba trophozoites showed greater adhesion to cosmetic CL (P = 0.017 for 1-day CL and P = 0.009 for 2-week CL) although there was no significant difference between the types of cosmetic CL. On all lenses, the number of adherent Acanthamoeba was significantly reduced after treatment with MPS (P < 0.001 for 1-day Acuvue moist, P = 0.046 for 1-day Acuvue define, P < 0.001 for Acuvue 2, and P = 0.015 for Acuvue 2 define), but there was still significant difference between conventional and cosmetic CLs (P = 0.003 for 1-day CL and P < 0.001 for 2-week CL, respectively). More attachment of Acanthamoeba was observed on colored area and the acanthopodia of Acanthamoeba was placed on the rough surface of colored area. CONCLUSION: Acanthamoeba showed a greater affinity for cosmetic CL and mostly attached on colored area. Although MPS that contained myristamidopropyl dimethylamine reduced the adhesion rate, there was a significant difference between conventional and cosmetic CLs.


Subject(s)
Acanthamoeba/physiology , Contact Lenses/parasitology , Disinfectants/pharmacology , Humans , Microscopy, Electron, Scanning , Trophozoites/drug effects , Trophozoites/physiology
18.
Ecotoxicol Environ Saf ; 147: 80-85, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28837873

ABSTRACT

Batch sorption and leaching of arsenic (1-30mgL-1) on Fe-sericite composite powder and beads were investigated in this study. Fe-sericite composite powder was made from natural sericite modified with iron, and alginate was used to transform the powder into beads. The maximum sorption capacities of the Fe-sericite composite powder (15.04 and 13.21mgg-1 for As(III) and As(V), respectively) were higher than those of the corresponding beads (9.02 and 7.11mgg-1 for As(III) and As(V), respectively) owing to the higher specific surface area of the powder. In addition, the leaching amounts of As(III) from Fe-sericite composite beads (≤ 15.03%) were higher than those of the corresponding powder (≤ 5.71%). However, acute toxicity of As(III)-sorbed Fe-sericite composite beads toward Daphnia magna was not significantly different from that of the corresponding powder (p > 0.05). Considering higher uptake of the powder particles by the daphnids, Fe-sericite composite beads seem to be a more appropriate and safer sorbent for arsenic removal in practical application. Based on Fe content, Fe-sericite composite beads had similar or higher maximum sorption capacities (71.19 and 56.11mgg-1 Fe for As(III) and As(V), respectively) than those of previously reported sorbents.


Subject(s)
Arsenates/analysis , Arsenites/analysis , Iron/chemistry , Silicon Dioxide/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Alginates/chemistry , Animals , Arsenates/toxicity , Arsenites/toxicity , Daphnia/drug effects , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Models, Theoretical , Particle Size , Powders , Surface Properties , Toxicity Tests, Acute , Water Pollutants, Chemical/toxicity
19.
Cornea ; 36(12): 1538-1543, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28834815

ABSTRACT

PURPOSE: The aim of the study was to evaluate the effect of multipurpose contact lens (CL) solution (MPS) combined with autophagy inhibitors on the adhesion properties of Acanthamoeba castellanii (AC) trophozoites to silicone hydrogel CLs. METHODS: AC trophozoites were inoculated onto discs trimmed from a silicone hydrogel CL with plasma surface treatment. After 18 hours, the number of adherent AC trophozoites on the CL treated with MPS was counted under phase-contrast microscopy. We analyzed the efficacy of MPS combined with autophagy inhibitors, 3-methyladenine (0.1, 1, and 5 mM) and chloroquine (10, 100 µM, and 1 mM), on Acanthamoeba adhesion by electron microscopy. RESULTS: Adhesion of AC trophozoites to the CL treated with MPS (average number of trophozoites adhered to the CL: 61.2 ± 8.1) was significantly lower compared with that of the CL treated without MPS (83.8 ± 10.2) (P = 0.027). In MPS application, the number of adhered AC trophozoites treated with 3-methyladenine [8.2 ± 2.5 for 5 mM (P = 0.008)] or chloroquine [19.4 ± 7.6 for 100 µM (P = 0.038) and 5.3 ± 1.9 for 1 mM (P = 0.001)] was significantly reduced compared with the sample without autophagy inhibitors. However, the number of adherent AC trophozoites was not significantly reduced in less than 5 mM in 3-methyladenine [50.4 ± 5.1 for 0.1 mM (P = 0.084) and 43.1 ± 5.0 for 1 mM (P = 0.079)] and 100 µM in chloroquine [40.6 ± 13.5 for 10 µM (P = 0.075)]. 3-methyladenine induced blebby structures or disrupted the membranes of AC trophozoites. AC trophozoites treated with chloroquine showed undigested organelles in the cytoplasm of Acanthamoeba cells. CONCLUSIONS: MPS combined with 3-methyladenine or chloroquine reduced the adhesion rate of AC trophozoites rather than MPS containing only polyhexamethylene biguanide. Appropriate concentrations of autophagy inhibitors, 3-methyladenine and chloroquine, added to commercial MPS should be considered to decrease the clinical rate of Acanthamoeba keratitis.


Subject(s)
Acanthamoeba castellanii/drug effects , Amebicides/pharmacology , Autophagy/drug effects , Bacterial Adhesion/drug effects , Contact Lens Solutions/pharmacology , Contact Lenses, Hydrophilic/parasitology , Adenine/analogs & derivatives , Adenine/pharmacology , Chloroquine/pharmacology , Hydrogel, Polyethylene Glycol Dimethacrylate , Microscopy, Electron/methods , Silicones , Trophozoites/drug effects
20.
J Environ Manage ; 184(Pt 3): 585-595, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27789093

ABSTRACT

The study aimed to utilize the domestic wastewater as nutrient feedstock for mixotrophic cultivation of microalgae by evaluating appropriate carbon source. The microalgae Chlorella vulgaris was cultivated in municipal wastewater under various carbon sources (glucose, glycerol, and acetate), followed by optimization of appropriate carbon source concentration to augment the biomass, lipid, and carbohydrate contents. Under optimized conditions, namely of 5 g/L glucose, C. vulgaris showed higher increments of biomass with 1.39 g/L dry cell weight achieving biomass productivity of 0.13 g/L/d. The biomass accumulated 19.29 ± 1.83% total lipid, 41.4 ± 1.46% carbohydrate, and 33.06 ± 1.87% proteins. Moreover, the cultivation of Chlorella sp. in glucose-supplemented wastewater removed 96.9% chemical oxygen demand, 65.3% total nitrogen, and 71.2% total phosphate. The fatty acid methyl ester obtained showed higher amount (61.94%) of saturated fatty acid methyl esters associated with the improved fuel properties. These results suggest that mixotrophic cultivation using glucose offers great potential in the production of renewable biomass, wastewater treatment, and consequent production of high-value microalgal oil.


Subject(s)
Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Microalgae/growth & development , Microalgae/metabolism , Wastewater , Biological Oxygen Demand Analysis , Biomass , Esters , Fatty Acids/metabolism , Glucose/metabolism , Lipid Metabolism , Nitrogen/metabolism , Phosphates/metabolism , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...