Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
BMB Rep ; 57(5): 256-261, 2024 May.
Article in English | MEDLINE | ID: mdl-38627949

ABSTRACT

In the context of aging, the susceptibility to infectious diseases increases, leading to heightened morbidity and mortality. This phenomenon, termed immunosenescence, is characterized by dysregulation in the aging immune system, including abnormal alterations in lymphocyte composition, elevated basal inflammation, and the accumulation of senescent T cells. Such changes contribute to increased autoimmune diseases, enhanced infection severity, and reduced responsiveness to vaccines. Utilizing aging animal models becomes imperative for a comprehensive understanding of immunosenescence, given the complexity of aging as a physiological process in living organisms. Our investigation focuses on Cisd2, a causative gene for Wolfram syndrome, to elucidate on immunosenescence. Cisd2 knockout (KO) mice, serving as a model for premature aging, exhibit a shortened lifespan with early onset of aging-related features, such as decreased bone density, hair loss, depigmentation, and optic nerve degeneration. Intriguingly, we found that the Cisd2 KO mice present a higher number of neutrophils in the blood; however, isolated neutrophils from these mice display functional defects. Through mass spectrometry analysis, we identified an interaction between Cisd2 and Calnexin, a protein known for its role in protein quality control. Beyond this function, Calnexin also regulates calcium homeostasis through interaction with sarcoendoplasmic reticulum calcium transport ATPase (SERCA). Our study proposes that Cisd2 modulates calcium homeostasis via its interaction with Calnexin and SERCA, consequently influencing neutrophil functions. [BMB Reports 2024; 57(5): 256-261].


Subject(s)
Calcium , Homeostasis , Mice, Knockout , Neutrophils , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Animals , Neutrophils/metabolism , Mice , Calcium/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Membrane Proteins/metabolism , Membrane Proteins/deficiency , Membrane Proteins/genetics
2.
Mitochondrial DNA B Resour ; 8(6): 695-698, 2023.
Article in English | MEDLINE | ID: mdl-37389153

ABSTRACT

Porella grandiloba Lindb. is a liverwort species of Porellaceae, primarily distributed in East Asia. Here, we determined the complete chloroplast (cp) genome sequence of P. grandiloba. The complete cp genome was 121,433 bp in length with a typical quadripartite structure consisting of a large single-copy region (83,039 bp), a small single-copy region (19,586 bp), and two copies of inverted repeat regions (9,404 bp, each). Genome annotation predicted 131 genes, including 84 protein-coding, 36 tRNA, and eight rRNA genes. The maximum likelihood tree indicated that P. grandiloba was sister to P. perrottetiana, which species formed a clade with Radula japonica (Radulaceae).

3.
Nat Commun ; 14(1): 2045, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041174

ABSTRACT

Lung mast cells are important in host defense, and excessive proliferation or activation of these cells can cause chronic inflammatory disorders like asthma. Two parallel pathways induced by KIT-stem cell factor (SCF) and FcεRI-immunoglobulin E interactions are critical for the proliferation and activation of mast cells, respectively. Here, we report that mast cell-expressed membrane protein1 (MCEMP1), a lung-specific surface protein, functions as an adaptor for KIT, which promotes SCF-mediated mast cell proliferation. MCEMP1 elicits intracellular signaling through its cytoplasmic immunoreceptor tyrosine-based activation motif and forms a complex with KIT to enhance its autophosphorylation and activation. Consequently, MCEMP1 deficiency impairs SCF-induced peritoneal mast cell proliferation in vitro and lung mast cell expansion in vivo. Mcemp1-deficient mice exhibit reduced airway inflammation and lung impairment in chronic asthma mouse models. This study shows lung-specific MCEMP1 as an adaptor for KIT to facilitate SCF-mediated mast cell proliferation.


Subject(s)
Asthma , Stem Cell Factor , Animals , Mice , Cell Proliferation , Lung/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Stem Cell Factor/metabolism
4.
Nat Cell Biol ; 25(1): 92-107, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36604592

ABSTRACT

RIPK3-ZBP1-MLKL-mediated necroptosis is a proinflammatory cell death process that is crucial for antiviral host defence. RIPK3 self-oligomerization and autophosphorylation are prerequisites for executing necroptosis, yet the underlying mechanism of virus-induced RIPK3 activation remains elusive. Interferon-inducible 2'-5' oligoadenylate synthetase-like (OASL) protein is devoid of enzymatic function but displays potent antiviral activity. Here we describe a role of OASL as a virus-induced necroptosis promoter that scaffolds the RIPK3-ZBP1 non-canonical necrosome via liquid-like phase condensation. This liquid-like platform of OASL recruits RIPK3 and ZBP1 via protein-protein interactions to provide spatial segregation for RIPK3 nucleation. This process facilitates the amyloid-like fibril formation and activation of RIPK3 and thereby MLKL phosphorylation for necroptosis. Mice deficient in Oasl1 exhibit severely impaired necroptosis and attenuated inflammation after viral infection, resulting in uncontrolled viral dissemination and lethality. Our study demonstrates an interferon-induced innate response whereby OASL scaffolds RIPK3-ZBP1 assembly via its phase-separated liquid droplets to facilitate necroptosis-mediated antiviral immunity.


Subject(s)
Necroptosis , Protein Kinases , Animals , Mice , Protein Kinases/genetics , Protein Kinases/metabolism , Cell Death , Antiviral Agents , Interferons/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Apoptosis , RNA-Binding Proteins/metabolism
6.
Article in English | MEDLINE | ID: mdl-35960646

ABSTRACT

A novel strictly aerobic, Gram-stain-positive, rod-shaped, motile, endospore-forming, white-coloured bacterium, designated strain MFER-1T, was isolated from a fermented liquor of wild grasses sampled in the Republic of Korea. The respiratory quinone of strain MFER-1T was menaquinone-7 and its major cellular fatty acids were anteiso-C15 : 0 (55.3 %), iso-C16 : 0 (17.5 %) and C16 : 0 (12.1 %). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unidentified aminophospholipids and an unidentified phospholipid. The 16S rRNA gene sequence of strain MFER-1T showed similarity of 98.1 % to 'Cohnella cholangitidis' 1 605-214T and below 98.0 % sequence similarity to the other Cohnella species. The phylogenomic tree indicated that strain MFER-1T formed a reliable cluster with several Cohnella species. The estimated genome size of strain MFER-1T was 8.52 Mb. Genomic DNA G+C content was 50.7mol%. The orthologous average nucleotide identity, digital DNA-DNA hybridization and amino acid identity values of strain MFER-1T with the most closely related species 'Cohnella cholangitidis' 1 605-214T were 78.7, 23.0 and 79.6 %, respectively. Based on the phenotypic, chemotaxonomic and phylogenetic results, strain MFER-1T should represent a novel species of the genus Cohnella, for which the name Cohnella herbarum sp. nov. is proposed, with strain MFER-1T (=KACC 21 257T=NBRC 114 628T) as the type strain.


Subject(s)
Bacillales , Poaceae , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fermentation , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
PLoS Pathog ; 18(8): e1010775, 2022 08.
Article in English | MEDLINE | ID: mdl-35976902

ABSTRACT

The oral cavity is the major site for transmission of Kaposi's sarcoma-associated herpesvirus (KSHV), but how KSHV establishes infection and replication in the oral epithelia remains unclear. Here, we report a KSHV spontaneous lytic replication model using fully differentiated, three-dimensional (3D) oral epithelial organoids at an air-liquid interface (ALI). This model revealed that KSHV infected the oral epithelia when the basal epithelial cells were exposed by damage. Unlike two-dimensional (2D) cell culture, 3D oral epithelial organoid ALI culture allowed high levels of spontaneous KSHV lytic replication, where lytically replicating cells were enriched at the superficial layer of epithelial organoid. Single cell RNA sequencing (scRNAseq) showed that KSHV infection induced drastic changes of host gene expression in infected as well as uninfected cells at the different epithelial layers, resulting in altered keratinocyte differentiation and cell death. Moreover, we identified a unique population of infected cells containing lytic gene expression at the KSHV K2-K5 gene locus and distinct host gene expression compared to latent or lytic infected cells. This study demonstrates an in vitro 3D epithelial organoid ALI culture model that recapitulates KSHV infection in the oral cavity, where KSHV undergoes the epithelial differentiation-dependent spontaneous lytic replication with a unique cell population carrying distinct viral gene expression.


Subject(s)
Acquired Immunodeficiency Syndrome , Herpesviridae Infections , Herpesvirus 8, Human , Gene Expression Regulation, Viral , Herpesvirus 8, Human/physiology , Humans , Single-Cell Analysis , Virus Latency , Virus Replication
8.
Cell Rep ; 40(7): 111234, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35977517

ABSTRACT

Spermidine is essential for cellular growth and acts as a prerequisite of hypusination, a post-translational modification of eukaryotic initiation factor 5A (eIF5A), allowing the translation of polyproline-containing proteins. Here, we show that oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) increases spermidine synthesis and eIF5A hypusination to enhance expression of polyproline-containing latency-associated nuclear antigen (LANA) for viral episomal maintenance. KSHV upregulates intracellular spermidine levels by dysregulating polyamine metabolic pathways in three-dimensional (3D) culture and 2D de novo infection conditions. Increased intracellular spermidine leads to increased eIF5A hypusination, ultimately enhancing LANA expression. In contrast, inhibition of spermidine synthesis or eIF5A hypusination alleviates LANA expression, decreasing viral episomal maintenance and KSHV-infected cell proliferation in vitro and in vivo, which is reversed by spermidine supplement. This demonstrates that KSHV hijacks spermidine synthesis and eIF5A hypusination pathways to enhance LANA expression for viral episomal maintenance, suggesting polyamine metabolism and eIF5A hypusination as therapeutic targets for KSHV-induced tumorigenesis.


Subject(s)
Herpesvirus 8, Human , Spermidine , Antigens, Viral/metabolism , Cell Line , Herpesvirus 8, Human/physiology , Peptide Initiation Factors/metabolism , Protein Processing, Post-Translational , Spermidine/metabolism , Spermidine/pharmacology
9.
Radiology ; 305(2): 307-316, 2022 11.
Article in English | MEDLINE | ID: mdl-35787199

ABSTRACT

Background Accurate preoperative prediction of upstaging in women with biopsy-proven ductal carcinoma in situ (DCIS) is important for surgical planning, but published models using predictive MRI features remain lacking. Purpose To develop and validate a predictive model based on preoperative breast MRI to predict upstaging in women with biopsy-proven DCIS and to select high-risk women who may benefit from sentinel lymph node biopsy at initial surgery. Materials and methods Consecutive women with biopsy-proven DCIS who underwent preoperative 3.0-T breast MRI including dynamic contrast-enhanced (DCE) MRI and diffusion-weighted imaging (DWI) and who underwent surgery between June 2019 and March 2020 were retrospectively identified (development set) from an academic medical center. The apparent diffusion coefficients of lesions from DWI, lesion size and morphologic features on DCE MRI scans, mammographic findings, age, symptoms, biopsy method, and DCIS grade at biopsy were collected. The presence of invasive cancer and axillary metastases was determined with surgical pathology. A predictive model for upstaging was developed by using multivariable logistic regression and validated in a subsequent prospective internal validation set recruited between July 2020 and April 2021. Results Fifty-seven (41%) of 140 women (mean age, 53 years ± 11 [SD]) in the development set and 43 (41%) of 105 women (mean age, 53 years ± 10) in the validation set were upstaged after surgery. The predictive model combining DWI and clinical-pathologic factors showed the areas under the receiver operating characteristic curve at 0.87 (95% CI: 0.80, 0.92) in the development set and 0.76 (95% CI: 0.67, 0.84) in the validation set. The predicted probability of invasive cancer showed good interobserver agreement (intraclass correlation coefficient, 0.79); the positive predictive value was 85% (28 of 33), and the negative predictive value was 92% (22 of 24). Conclusion A predictive model based on diffusion-weighted breast MRI identified women at high risk of upstaging. © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Baltzer in this issue. An earlier incorrect version appeared online. This article was corrected on July 7, 2022.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Intraductal, Noninfiltrating , Female , Humans , Middle Aged , Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging , Carcinoma, Intraductal, Noninfiltrating/surgery , Carcinoma, Intraductal, Noninfiltrating/pathology , Retrospective Studies , Prospective Studies , Sentinel Lymph Node Biopsy , Carcinoma, Ductal, Breast/pathology , Magnetic Resonance Imaging , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery
10.
Trauma Case Rep ; 38: 100630, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35274034

ABSTRACT

Traumatic intussusception is exceedingly rare. According to the existing literature, most cases are treated surgically. However, the treatment and prognosis of traumatic intussusception are not well understood, and more research is needed to determine the most beneficial treatment options. Multiple intussusceptions were found on a computed tomography scan of a 9-year-old boy with multiple severe traumatic injuries resulting from a car accident while riding an electric scooter. Conservative management was performed, and spontaneous reduction was successfully achieved without complications. This is the first reported case where multiple traumatic intussusceptions in a pediatric patient were managed without surgical intervention. Thus, traumatic intussusception of varied quantity and quality might be managed conservatively, yielding spontaneous resolution with the prerequisites of stable vital signs and no evidence of intestinal ischemia or perforation.

11.
Nat Commun ; 13(1): 21, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013229

ABSTRACT

While the seroprevalence of SARS-CoV-2 in healthy people does not differ significantly among age groups, those aged 65 years or older exhibit strikingly higher COVID-19 mortality compared to younger individuals. To further understand differing COVID-19 manifestations in patients of different ages, three age groups of ferrets are infected with SARS-CoV-2. Although SARS-CoV-2 is isolated from all ferrets regardless of age, aged ferrets (≥3 years old) show higher viral loads, longer nasal virus shedding, and more severe lung inflammatory cell infiltration, and clinical symptoms compared to juvenile (≤6 months) and young adult (1-2 years) groups. Furthermore, direct contact ferrets co-housed with the virus-infected aged group shed more virus than direct-contact ferrets co-housed with virus-infected juvenile or young adult ferrets. Transcriptome analysis of aged ferret lungs reveals strong enrichment of gene sets related to type I interferon, activated T cells, and M1 macrophage responses, mimicking the gene expression profile of severe COVID-19 patients. Thus, SARS-CoV-2-infected aged ferrets highly recapitulate COVID-19 patients with severe symptoms and are useful for understanding age-associated infection, transmission, and pathogenesis of SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Disease Models, Animal , SARS-CoV-2/immunology , Virus Shedding/immunology , Age Factors , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/genetics , COVID-19/transmission , Chlorocebus aethiops , Female , Ferrets , Gene Expression Profiling/methods , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Vero Cells , Virulence
12.
Plant Pathol J ; 37(6): 662-672, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34897257

ABSTRACT

Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes.

13.
Korean J Intern Med ; 36(5): 1040-1048, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34344146

ABSTRACT

The incidence and prevalence rates of inf lammatory bowel disease (IBD) have been increasing in East Asian countries over the past few decades. Accordingly, the general understanding and awareness of IBD among healthcare professionals has increased considerably in this region. This increase is ultimately associated with the evolving focus of IBD clinicians devoted to comprehensive patient care, especially in establishing IBD clinics/centers capable of providing multidisciplinary counseling. Comprehensive IBD care at IBD clinics/centers usually includes surgical and medication decision-making, transition from pediatric to adult clinics, care of extraintestinal manifestations, care of infectious diseases in patients undergoing immunomodulatory or biologic therapies, and nutritional, psychosocial, socioeconomic, and pharmacological care. Team members comprise specialists from various departments related to IBD and can be divided into core and ad hoc members. Usually, the scope of work in IBD clinics/centers involves patient care, patient outreach, and system management. Considering the environmental changes in IBD treatment, it is necessary to perform comprehensive IBD patient care in the form of a program based on competencies, rather than simply following the organization of previous IBD centers. The present review summarizes recent trends in IBD patient care and offers perspectives regarding IBD center management.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Adult , Child , Humans , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/epidemiology , Inflammatory Bowel Diseases/therapy
14.
Int J Mol Sci ; 22(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063990

ABSTRACT

The association of RNA modification in cancer has recently been highlighted. Methyltransferase like 8 (METTL8) is an enzyme and its role in mRNA m3C modification has barely been studied. In this study, we found that METTL8 expression was significantly up-regulated in canine mammary tumor and investigated its functional roles in the tumor process, including cancer cell proliferation and migration. METTL8 expression was up-regulated in most human breast cancer cell lines tested and decreased by Yin Yang 1 (YY1) transcription factor knockdown, suggesting that YY1 is a regulating transcription factor. The knockdown of METTL8 attenuated tumor cell growth and strongly blocked tumor cell migration. AT-rich interactive domain-containing protein 1A (ARID1A) was identified as a candidate mRNA by METTL8. ARID1A mRNA binds to METTL8 protein. ARID1A mRNA expression was not changed by METTL8 knockdown, but ARID1A protein level was significantly increased. Collectively, our study indicates that METTL8 up-regulated by YY1 in breast cancer plays an important role in cancer cell migration through the mRNA modification of ARID1A, resulting in the attenuation of its translation.


Subject(s)
Cell Movement/genetics , DNA-Binding Proteins/genetics , Methyltransferases/genetics , RNA, Messenger/genetics , Transcription Factors/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , MCF-7 Cells , Up-Regulation/genetics , YY1 Transcription Factor/genetics
15.
Article in English | MEDLINE | ID: mdl-33913805

ABSTRACT

Two bacterial strains, FWR-8T and CFWR-9T, were isolated from the gut of larvae of Protaetia brevitarsis seulensis that were raised at the National Institute of Agricultural Sciences, Wanju-gun, Republic of Korea. Both strains were strictly aerobic, Gram-stain-positive and non-motile. Strain FWR-8T possessed the highest sequence similarity (98.7 %) to that of Protaetiibacter intestinalis 2DFWR-13T and the phylogenetic tree revealed that strain FWR-8T formed a cluster with Ptb. intestinalis 2DFWR-13T. Pseudolysinimonas kribbensis MSL-13T and Lysinimonas yzui N7XX-4T shared a high 16S rRNA gene sequence similarity (97.8 %) and formed a cluster adjacent to the cluster that included Ptb. intestinalis 2DFWR-13T. The 16S rRNA gene sequence of strain CFWR-9T exhibited the highest similarity (97.7 %) to that of Agromyces binzhouensis OAct353T and the phylogenetic tree indicated that strain CFWR-9T formed one independent cluster with A. binzhouensis OAct353T that was within the radius of the genus Agromyces. The peptidoglycan type, major fatty acids, major menaquinones and total polar lipids of strain FWR-8T were characterized as type B1, iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0, MK-15, MK-16 and MK-14, and diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and one unidentified lipid, respectively. Those from strain CFWR-9T were type B1, iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0, MK-11, MK-12 and MK-10, and diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and one unidentified lipid, respectively. Based on the phenotypic and genotypic data, strains FWR-8T and CFWR-9T each represent a novel species within the genera Protaetiibacter and Agromyces, respectively. For these species, the names Protaetiibacter larvae sp. nov. and Agromyces intestinalis sp. nov. have been proposed, with the type strains FWR-8T (=KACC 19322T=NBRC 113051T) and CFWR-9T (=KACC 19306T=NBRC 113046T), respectively. Our results also justify a reclassification of Lysinimonas yzui as Pseudolysinimonas yzui comb. nov. and an emended description of the genus Pseudolysinimonas isprovided.


Subject(s)
Actinobacteria/classification , Coleoptera/microbiology , Gastrointestinal Tract/microbiology , Phylogeny , Actinobacteria/isolation & purification , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Glycolipids/chemistry , Larva/microbiology , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA , Vitamin K 2/chemistry
16.
Res Sq ; 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33821260

ABSTRACT

While the seroprevalence of SARS-CoV-2 in healthy people does not differ significantly among age groups, those aged 65 years or older exhibit strikingly higher COVID-19 mortality compared to younger individuals. To further understand differing COVID-19 manifestations in patients of different ages, three age groups of ferrets were infected with SARS-CoV-2. Although SARS-CoV-2 was isolated from all ferrets regardless of age, aged ferrets (≥ 3 years old) showed higher viral loads, longer nasal virus shedding, and more severe lung inflammatory cell infiltration and clinical symptoms compared to juvenile (≤ 6 months) and young adult (1-2 years) groups. Transcriptome analysis of aged ferret lungs revealed strong enrichment of gene sets related to type I interferon, activated T cells, and M1 macrophage responses, mimicking the gene expression profile of severe COVID-19 patients. Thus, SARS-CoV-2-infected aged ferrets highly recapitulate COVID-19 patients with severe symptoms and are useful for understanding age-associated infection, transmission, and pathogenesis of SARS-CoV-2.

17.
mBio ; 12(2)2021 03 02.
Article in English | MEDLINE | ID: mdl-33653891

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of the CoV disease 2019 (COVID-19) pandemic, enters host cells via the interaction of its receptor-binding domain (RBD) of the spike protein with host angiotensin-converting enzyme 2 (ACE2). Therefore, the RBD is a promising vaccine target to induce protective immunity against SARS-CoV-2 infection. In this study, we report the development of an RBD protein-based vaccine candidate against SARS-CoV-2 using self-assembling Helicobacter pylori-bullfrog ferritin nanoparticles as an antigen delivery system. RBD-ferritin protein purified from mammalian cells efficiently assembled into 24-mer nanoparticles. Sixteen- to 20-month-old ferrets were vaccinated with RBD-ferritin nanoparticles (RBD nanoparticles) by intramuscular or intranasal inoculation. All vaccinated ferrets with RBD nanoparticles produced potent neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demonstrated efficient protection from SARS-CoV-2 challenge, showing no fever, body weight loss, or clinical symptoms. Furthermore, vaccinated ferrets showed rapid clearance of infectious virus in nasal washes and lungs as well as of viral RNA in respiratory organs. This study demonstrates that spike RBD-nanoparticles are an effective protein vaccine candidate against SARS-CoV-2.


Subject(s)
COVID-19/prevention & control , Nanoparticles/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Viral Vaccines/therapeutic use , Angiotensin-Converting Enzyme 2/chemistry , Animals , Cellulose/chemistry , Coronavirus/immunology , Coronavirus/pathogenicity , Ferrets , Ferritins , SARS-CoV-2/immunology , Viral Vaccines/chemistry
18.
bioRxiv ; 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33532767

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of COVID-19 pandemic, enters host cells via the interaction of its Receptor-Binding Domain (RBD) of Spike protein with host Angiotensin-Converting Enzyme 2 (ACE2). Therefore, RBD is a promising vaccine target to induce protective immunity against SARS-CoV-2 infection. In this study, we report the development of RBD protein-based vaccine candidate against SARS-CoV-2 using self-assembling H. pylori -bullfrog ferritin nanoparticles as an antigen delivery. RBD-ferritin protein purified from mammalian cells efficiently assembled into 24-mer nanoparticles. 16-20 months-old ferrets were vaccinated with RBD-ferritin nanoparticles (RBD-nanoparticles) by intramuscular or intranasal inoculation. All vaccinated ferrets with RBD-nanoparticles produced potent neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demonstrated efficient protection from SARS-CoV-2 challenge, showing no fever, body weight loss and clinical symptoms. Furthermore, vaccinated ferrets showed rapid clearance of infectious viruses in nasal washes and lungs as well as viral RNA in respiratory organs. This study demonstrates the Spike RBD-nanoparticle as an effective protein vaccine candidate against SARS-CoV-2.

19.
Nat Microbiol ; 6(4): 455-466, 2021 04.
Article in English | MEDLINE | ID: mdl-33510473

ABSTRACT

The most frequent fetal birth defect associated with prenatal Zika virus (ZIKV) infection is brain calcification, which in turn may potentially affect neurological development in infants. Understanding the mechanism could inform the development of potential therapies against prenatal ZIKV brain calcification. In perivascular cells, bone morphogenetic protein (BMP) is an osteogenic factor that undergoes maturation to activate osteogenesis and calcification. Here, we show that ZIKV infection of cultivated primary human brain pericytes triggers BMP2 maturation, leading to osteogenic gene expression and calcification. We observed extensive calcification near ZIKV+ pericytes of fetal human brain specimens and in vertically transmitted ZIKV+ human signal transducer and activator of transcription 2-knockin mouse pup brains. ZIKV infection of primary pericytes stimulated BMP2 maturation, inducing osteogenic gene expression and calcification that were completely blocked by anti-BMP2/4 neutralizing antibody. Not only did ZIKV NS3 expression alone induce BMP2 maturation, osteogenic gene expression and calcification, but purified NS3 protease also effectively cleaved pro-BMP2 in vitro to generate biologically active mature BMP2. These findings highlight ZIKV-induced calcification where the NS3 protease subverts the BMP2-mediated osteogenic signalling pathway to trigger brain calcification.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Brain/pathology , Calcinosis/pathology , Fetus/pathology , Serine Endopeptidases/metabolism , Viral Proteins/metabolism , Zika Virus Infection/pathology , Zika Virus/pathogenicity , Animals , Bone Morphogenetic Protein 2/metabolism , Brain/metabolism , Brain/virology , Calcinosis/metabolism , Calcinosis/virology , Calcium/metabolism , Cells, Cultured , Fetus/virology , Humans , Infectious Disease Transmission, Vertical , Mice , Mice, Transgenic , Osteogenesis/genetics , Pericytes , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , Signal Transduction , Zika Virus/enzymology , Zika Virus Infection/metabolism , Zika Virus Infection/transmission , Zika Virus Infection/virology
20.
Emerg Microbes Infect ; 10(1): 152-160, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33407005

ABSTRACT

Cases of laboratory-confirmed SARS-CoV-2 reinfection have been reported in a number of countries. Further, the level of natural immunity induced by SARS-CoV-2 infection is not fully clear, nor is it clear if a primary infection is protective against reinfection. To investigate the potential association between serum antibody titres and reinfection of SARS-CoV-2, ferrets with different levels of NAb titres after primary SARS-CoV-2 infection were subjected to reinfection with a heterologous SARS-CoV-2 strain. All heterologous SARS-CoV-2 reinfected ferrets showed active virus replication in the upper respiratory and gastro-intestinal tracts. However, the high NAb titre group showed attenuated viral replication and rapid viral clearance. In addition, direct-contact transmission was observed only from reinfected ferrets with low NAb titres (<20), and not from other groups. Further, lung histopathology demonstrated the presence of limited inflammatory regions in the high NAb titre groups compared with control and low NAb groups. This study demonstrates a close correlation between a low NAb titre and SARS-CoV-2 reinfection in a recovered ferret reinfection model.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/transmission , Reinfection/immunology , SARS-CoV-2/immunology , Animals , COVID-19/virology , Chlorocebus aethiops , Ferrets , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...