Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Vaccine ; 41(21): 3367-3379, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37100721

ABSTRACT

Recent work demonstrating that asymptomatic carriers of P. falciparum parasites make up a large part of the infectious reservoir highlights the need for an effective malaria vaccine. Given the historical challenges of vaccine development, multiple parasite stages have been targeted, including the sexual stages required for transmission. Using flow cytometry to efficiently screen for P. falciparum gamete/zygote surface reactivity, we identified 82 antibodies that bound live P. falciparum gametes/zygotes. Ten antibodies had significant transmission-reducing activity (TRA) in a standard membrane feeding assay and were subcloned along with 9 nonTRA antibodies as comparators. After subcloning, only eight of the monoclonals obtained have significant TRA. These eight TRA mAbs do not recognize epitopes present in any of the current recombinant transmission-blocking vaccine candidates, Pfs230D1M, Pfs48/45.6C, Pf47 D2 and rPfs25. One TRA mAb immunoprecipitates two surface antigens, Pfs47 and Pfs230, that are expressed by both gametocytes and gametes/zygotes. These two proteins have not previously been reported to associate and the recognition of both by a single TRA mAb suggests the Pfs47/Pfs230 complex is a new vaccine target. In total, Pfs230 was the dominant target antigen, with five of the eight TRA mAbs and 8 of 11 nonTRA gamete/zygote surface reactive mAbs interacting with Pfs230. Of the three remaining TRA mAbs, two recognized non-reduced, parasite-produced Pfs25 and one bound non-reduced, parasite-produced Pfs48/45. None of the TRA mAbs bound protein on an immunoblot of reduced gamete/zygote extract and two TRA mAbs were immunoblot negative, indicating none of the new TRA epitopes are linear. The identification of eight new TRA mAbs that bind epitopes not included in any of the constructs currently under advancement as transmission-blocking vaccine candidates may provide new targets worthy of further study.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Humans , Plasmodium falciparum , Antibodies, Blocking , Epitopes , Antibodies, Protozoan , Antibodies, Monoclonal , Protozoan Proteins , Antigens, Protozoan
2.
Immunity ; 56(2): 420-432.e7, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36792575

ABSTRACT

Pfs230 is essential for Plasmodium falciparum transmission to mosquitoes and is the protein targeted by the most advanced malaria-transmission-blocking vaccine candidate. Prior understanding of functional epitopes on Pfs230 is based on two monoclonal antibodies (mAbs) with moderate transmission-reducing activity (TRA), elicited from subunit immunization. Here, we screened the B cell repertoire of two naturally exposed individuals possessing serum TRA and identified five potent mAbs from sixteen Pfs230 domain-1-specific mAbs. Structures of three potent and three low-activity antibodies bound to Pfs230 domain 1 revealed four distinct epitopes. Highly potent mAbs from natural infection recognized a common conformational epitope that is highly conserved across P. falciparum field isolates, while antibodies with negligible TRA derived from natural infection or immunization recognized three distinct sites. Our study provides molecular blueprints describing P. falciparum TRA, informed by contrasting potent and non-functional epitopes elicited by natural exposure and vaccination.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Humans , Animals , Plasmodium falciparum , Epitopes , Protozoan Proteins , Antigens, Protozoan , Antibodies, Monoclonal , Antibodies, Protozoan , Malaria, Falciparum/prevention & control
3.
Vaccine ; 41(4): 938-944, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36585278

ABSTRACT

Malaria kills around 409,000 people a year, mostly children under the age of five. Malaria transmission-blocking vaccines work to reduce malaria prevalence in a community and have the potential to be part of a multifaceted approach required to eliminate the parasites causing the disease. Pfs25 is a leading malaria transmission-blocking antigen and has been successfully produced in a plant expression system as both a subunit vaccine and as a virus-like particle. This study demonstrates an improved version of the virus-like particle antigen display molecule by eliminating known protease sites from the prior A85 variant. This re-engineered molecule, termed B29, displays three times the number of Pfs25 antigens per virus-like particle compared to the original Pfs25 virus-like particle. An improved purification scheme was also developed, resulting in a substantially higher yield and improved purity. The molecule was evaluated in a mouse model and found to induce improved transmission-blocking activity at lower doses and longer durations than the original molecule.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Mice , Plasmodium falciparum , Protozoan Proteins , Antigens, Protozoan , Malaria/prevention & control , Malaria Vaccines/genetics , Malaria, Falciparum/prevention & control , Antibodies, Protozoan
4.
Vaccines (Basel) ; 10(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36298492

ABSTRACT

During development of a subunit vaccine, monitoring integrity of the recombinant protein for process development and quality control is critical. Pfs230 is a leading malaria transmission blocking vaccine candidate and the first to reach a Phase 2 clinical trial. The Pfs230 protein is expressed on the surface of gametes, and plays an important role in male fertility. While the potency of Pfs230 protein can be determined by a standard membrane-feeding assay (SMFA) using antibodies from immunized subjects, the precision of a general in vivo potency study is known to be poor and is also time-consuming. Therefore, using a well-characterized Pfs230 recombinant protein and two human anti-Pfs230 monoclonal antibodies (mAbs), which have functional activity judged by SMFA, a sandwich ELISA-based in vitro potency assay, called the Antigen Integrity Assay (AIA), was developed. Multiple validation parameters of AIA were evaluated to qualify the assay following International Conference on Harmonization (ICH) Q2(R1) guidelines. The AIA is a high throughput assay and demonstrated excellent precision (3.2 and 5.4% coefficients of variance for intra- and inter-assay variability, respectively) and high sensitivity (>12% impurity in a sample can be detected). General methodologies and the approach to assay validation described herein are amenable to any subunit vaccine as long as more than two functional, non-competing mAbs are available. Thus, this study supports future subunit vaccine development.

5.
Lancet Infect Dis ; 22(11): 1596-1605, 2022 11.
Article in English | MEDLINE | ID: mdl-35963275

ABSTRACT

BACKGROUND: Malaria elimination requires interruption of the highly efficient transmission of Plasmodium parasites by mosquitoes. TB31F is a humanised monoclonal antibody that binds the gamete surface protein Pfs48/45 and inhibits fertilisation, thereby preventing further parasite development in the mosquito midgut and onward transmission. We aimed to evaluate the safety and efficacy of TB31F in malaria-naive participants. METHODS: In this open-label, first-in-human, dose-escalation, phase 1 clinical trial, healthy, malaria-naive, adult participants were administered a single intravenous dose of 0·1, 1, 3, or 10 mg/kg TB31F or a subcutaneous dose of 100 mg TB31F, and monitored until day 84 after administration at a single centre in the Netherlands. The primary outcome was the frequency and magnitude of adverse events. Additionally, TB31F serum concentrations were measured by ELISA. Transmission-reducing activity (TRA) of participant sera was assessed by standard membrane feeding assays with Anopheles stephensi mosquitoes and cultured Plasmodium falciparum gametocytes. The trial is registered with Clinicaltrials.gov, NCT04238689. FINDINGS: Between Feb 17 and Dec 10, 2020, 25 participants were enrolled and sequentially assigned to each dose (n=5 per group). No serious or severe adverse events occurred. In total, 33 grade 1 and six grade 2 related adverse events occurred in 20 (80%) of 25 participants across all groups. Serum of all participants administered 1 mg/kg, 3 mg/kg, or 10 mg/kg TB31F intravenously had more than 80% TRA for 28 days or more, 56 days or more, and 84 days or more, respectively. The TB31F serum concentration reaching 80% TRA was 2·1 µg/mL (95% CI 1·9-2·3). Extrapolating the duration of TRA from antibody kinetics suggests more than 80% TRA is maintained for 160 days (95% CI 136-193) following a single intravenous 10 mg/kg dose. INTERPRETATION: TB31F is a well tolerated and highly potent monoclonal antibody capable of completely blocking transmission of P falciparum parasites from humans to mosquitoes. In areas of seasonal transmission, a single dose might cover an entire malaria season. FUNDING: PATH's Malaria Vaccine Initiative.


Subject(s)
Antimalarials , Malaria Vaccines , Malaria, Falciparum , Adult , Animals , Humans , Plasmodium falciparum , Antibodies, Monoclonal/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology
6.
NPJ Vaccines ; 5(1): 23, 2020.
Article in English | MEDLINE | ID: mdl-32218995

ABSTRACT

Pfs230 is a malaria transmission-blocking antigen candidate, expressed on the surface of Plasmodium falciparum gametocytes. A recombinant, his-tagged Pfs230 fragment (Pfs230C1; amino acids 443-731) formed serum-stable particles upon incubation with liposomes containing cobalt-porphyrin-phospholipid (CoPoP). In mice, immunization with Pfs230C1, admixed with the adjuvants Alum, Montanide ISA720 or CoPoP liposomes (also containing synthetic monophosphoryl lipid A; PHAD), resulted in elicitation of IgG antibodies, but only those induced with CoPoP/PHAD or ISA720 strongly reduced parasite transmission. Immunization with micrograms of Pfs230C1 adjuvanted with identical liposomes lacking cobalt (that did not induce particle formation) or Alum was less effective than immunization with nanograms of Pfs230C1 with CoPoP/PHAD. CoPoP/PHAD and ISA720 adjuvants induced antibodies with similar Pfs230C1 avidity but higher IgG2-to-IgG1 ratios than Alum, which likely contributed to enhanced functional activity. Unlike prior work with another transmission-blocking antigen (Pfs25), Pfs230C1 was found to be effectively taken up by antigen-presenting cells without particle formation. The anti-Pfs230C1 IgG response was durable in mice for 250 days following immunization with CoPoP/PHAD, as were antibody avidity and elevated IgG2-to-IgG1 ratios. Immunization of rabbits with 20 µg Pfs230C1 admixed with CoPoP/PHAD elicited antibodies that inhibited parasite transmission. Taken together, these results show that liposomes containing CoPoP and PHAD are an effective vaccine adjuvant platform for recombinant malaria transmission blocking antigens.

7.
Sci Rep ; 10(1): 395, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31942034

ABSTRACT

The Plasmodium falciparum gametocyte surface protein, Pfs48/45, is a potential target for malaria transmission-blocking vaccines. However, due to its size and complexity, expression of the full-length protein has been difficult, leading to focus on the C-terminal six cysteine domain (6C) with the use of fusion proteins to facilitate expression and folding. In this study, we utilized the baculovirus system to evaluate the expression of three Pfs48/45 proteins including the full-length protein, the 6C domain fragment and the 6C domain mutant to prevent glycosylation. Expression of the recombinant Pfs48/45 proteins was conducted in super Sf9 cells combined with the use of tunicamycin to prevent N-glycosylation. The proteins were then evaluated as immunogens in mice to demonstrate the induction of functionally active polyclonal antibody responses as measured in the standard membrane feeding assay (SMFA). Only the 6C protein was found to exhibit significant transmission-reducing activity. Further characterization of the biologically active 6C protein demonstrated it was homogeneous in terms of size, charge, conformation, absence of glycosylation, and containing proper disulfide bond pairings. This study presents an alternative expression system, without the need of a fusion protein partner, for the Pfs48/45 6C protein fragment including further evaluation as a potential transmission-blocking vaccine candidate.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Malaria Vaccines/biosynthesis , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Recombinant Proteins/biosynthesis , Animals , Baculoviridae/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Recombinant Proteins/immunology
8.
Malar J ; 18(1): 356, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31703583

ABSTRACT

BACKGROUND: Control and elimination of malaria can be accelerated by transmission-blocking interventions such as vaccines. A surface antigen of Plasmodium falciparum gametocytes, Pfs230, is a leading vaccine target antigen, and has recently progressed to experimental clinical trials. To support vaccine product development, an N-terminal Pfs230 antigen was designed to increase yield, as well as to improve antigen quality, integrity, and homogeneity. METHODS: A scalable baculovirus expression system was used to express the Pfs230D1+ construct (aa 552-731), which was subsequently purified and analysed. Pfs230D1+ was designed to avoid glycosylation and protease digestion, thereby potentially increasing homogeneity and stability. The resulting Pfs230D1+ protein was compared to a previous iteration of the Pfs230 N-terminal domain, Pfs230C1 (aa 443-731), through physiochemical characterization and in vivo analysis. The induction of functional antibody responses was confirmed via the standard membrane feeding assay (SMFA). RESULTS: Pfs230D1+ was produced and purified to an overall yield of 23 mg/L culture supernatant, a twofold yield increase over Pfs230C1. The Pfs230D1+ protein migrated as a single band via SDS-PAGE and was detected by anti-Pfs230C1 monoclonal antibodies. Evaluation by SDS-PAGE, chromatography (size-exclusion and reversed phase) and capillary isoelectric focusing demonstrated the molecule had improved homogeneity in terms of size, conformation, and charge. Intact mass spectrometry confirmed its molecular weight and that it was free of glycosylation, a key difference to the prior Pfs230C1 protein. The correct formation of the two intramolecular disulfide bonds was initially inferred by binding of a conformation specific monoclonal antibody and directly confirmed by LC/MS and peptide mapping. When injected into mice the Pfs230D1+ protein elicited antibodies that demonstrated transmission-reducing activity, via SMFA, comparable to Pfs230C1. CONCLUSION: By elimination of an O-glycosylation site, a potential N-glycosylation site, and two proteolytic cleavage sites, an improved N-terminal Pfs230 fragment was produced, termed D1+, which is non-glycosylated, homogeneous, and biologically active. An intact protein at higher yield than that previously observed for the Pfs230C1 fragment was achieved. The results indicate that Pfs230D1+ protein produced in the baculovirus expression system is an attractive antigen for transmission-blocking vaccine development.


Subject(s)
Antigens, Protozoan/genetics , Gene Expression/immunology , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Animals , Antigens, Protozoan/immunology , Mice , Protozoan Proteins/immunology
9.
Protein Expr Purif ; 160: 56-65, 2019 08.
Article in English | MEDLINE | ID: mdl-30978392

ABSTRACT

In an effort to control and eventually eliminate malaria, the development of transmission-blocking vaccines has long been sought. However, few antigens have been evaluated in clinical trials, often due to limitations in the expression and purification of the antigen in sufficient yield and quality. Pfs230, a surface antigen of gametocytes, has recently advanced to clinical evaluation as a conjugate vaccine using the Pseudomonas aeruginosa exoprotein A carrier protein. Here we continue to build upon prior work of developing a Pfs230 candidate in the baculovirus system, Pfs230C1 (aa 443-731), through systematic process development efforts to improve yield and purity. Various insect cells including High Five, Sf9 and Super Sf9 were first evaluated for quality and quantity of antigen, along with three insect cell media. In the selection of Sf9 cells, an intact Pfs230C1 was expressed and harvested at 48 h for downstream development. A downstream process, utilizing immobilized metal affinity column (IMAC), followed by ion exchange (IEX) membranes (Mustang S) and finally IEX chromatography (DEAE) yielded a pure Pfs230C1 protein. The complete process was repeated three times at the 20 L scale. To support the eventual chemistry manufacturing and controls (CMC) of Pfs230C1, analytical tools, including monoclonal antibodies, were developed to characterize the identity, integrity, and purity of Pfs230C1. These analytical tools, taken in combination with the optimized process, were implemented with Current Good Manufacturing Practices (cGMP) in mind with the ultimate objective of Phase I clinical trials.


Subject(s)
Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Amino Acid Motifs , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/isolation & purification , Baculoviridae/genetics , Baculoviridae/metabolism , Gene Expression , Humans , Malaria Vaccines/chemistry , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria Vaccines/isolation & purification , Malaria, Falciparum/parasitology , Plasmodium falciparum/chemistry , Plasmodium falciparum/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Spodoptera
10.
Vaccine ; 37(15): 2073-2078, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30850239

ABSTRACT

The standard membrane-feeding assay (SMFA) is a functional assay that has been used to inform the development of transmission-blocking vaccines (TBV) against Plasmodium falciparum malaria. For Pfs230, a lead target antigen for TBV development, a few studies have tested either a single anti-Pfs230 polyclonal or monoclonal antibody (one antibody per study) at serial dilutions and showed a dose-dependent response. Further, there have been reports that the SMFA activity of anti-Pfs230 polyclonal and monoclonal antibodies were enhanced in the presence of complement. However, no analysis has been performed with multiple samples, and the impact of anti-Pfs230 antibody titers, IgG subclass profile and avidity were evaluated together in relation to transmission-reducing activity (TRA) by SMFA. In this report, a total of 39 unique anti-Pfs230 IgGs from five different mouse immunization studies were assessed for their ELISA units (EU), IgG2/IgG1 ratio and avidity by ELISA, and the functionality (% transmission-reducing activity, %TRA) by SMFA. The mice were immunized with Pfs230 alone, Pfs230 conjugated to CRM197, or a mixture of unconjugated Pfs230 and CRM197 proteins using Alhydrogel or Montanide ISA720 adjuvants. In all studies, the Pfs230 antigen was from the same source. There was a significant correlation between EU and %TRA (p < 0.0001 by a Spearman rank test) for the anti-Pfs230 IgGs. Notably, multiple linear regression analyses showed that both IgG2/IgG1 ratio and avidity significantly affected %TRA (p = 0.003 to p = 0.014, depending on the models) after adjusting for EU. The results suggest that in addition to antibody titers, IgG2/IgG1 ratio and avidity should each be evaluated to predict the biological activity of anti-Pfs230 antibodies for future vaccine development.


Subject(s)
Antibodies, Protozoan/immunology , Antibody Affinity , Antigens, Protozoan/immunology , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G/classification , Plasmodium falciparum/immunology , Animals , Anopheles/parasitology , Antigens, Protozoan/classification , Female , Immunization , Immunoglobulin G/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Mice
11.
Nat Nanotechnol ; 13(12): 1174-1181, 2018 12.
Article in English | MEDLINE | ID: mdl-30297818

ABSTRACT

Pfs25 is a malaria transmission-blocking vaccine antigen candidate, but its apparently limited immunogenicity in humans has hindered clinical development. Here, we show that recombinant, polyhistidine-tagged (his-tagged) Pfs25 can be mixed at the time of immunization with pre-formed liposomes containing cobalt porphyrin-phospholipid, resulting in spontaneous nanoliposome antigen particleization (SNAP). Antigens are stably presented in uniformly orientated display via his-tag insertion in the cobalt porphyrin-phospholipid bilayer, without covalent modification or disruption of antigen conformation. SNAP immunization of mice and rabbits is well tolerated with minimal local reactogenicity, and results in orders-of-magnitude higher functional antibody generation compared with other 'mix-and-inject' adjuvants. Serum-stable antigen binding during transit to draining lymph nodes leads to enhanced antigen uptake by phagocytic antigen-presenting cells, with subsequent generation of long-lived, antigen-specific plasma cells. Seamless multiplexing with four additional his-tagged Plasmodium falciparum polypeptides induces strong and balanced antibody production, illustrating the simplicity of developing multistage particulate vaccines with SNAP immunization.


Subject(s)
Antigens, Protozoan/immunology , Liposomes/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Animals , Antibody Formation , Antigens, Protozoan/administration & dosage , Female , Humans , Immunization , Liposomes/administration & dosage , Malaria Vaccines/administration & dosage , Malaria, Falciparum/immunology , Mice , Protozoan Proteins/administration & dosage , RAW 264.7 Cells , Rabbits , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology
12.
Data Brief ; 18: 209-233, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29896512

ABSTRACT

This article contains the peptide data obtained while performing disulfide bond mapping of the recombinant Plasmodium falciparum protein, Pfs25, produced from the baculovirus expression system. Pfs25 is a malaria transmission-blocking vaccine candidate, with a compact and complex structure including 22 cysteines. This supplementary data is related to the research "Disulfide bond mapping of Pfs25, a recombinant malaria transmission blocking vaccine candidate" (Lee et al., 2018) [1]. In brief, Pfs25 was digested with trypsin/Lys-C and derived peptides separated by High Performance Liquid Chromatography (HPLC) and analyzed by mass spectrometry (MS) by MSE fragmentation. The theoretical peptides and their respective masses along with disulfide bond locations with linked peptides are presented here alongside the mass spectrometry analysis. The raw mass spectrometry data is made available through the Mass Spectrometry Interactive Virtual Environment (MassIVE) with identifier: MSV000081982.

13.
Anal Biochem ; 542: 20-23, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29162427

ABSTRACT

A liquid chromatography tandem-mass spectrometry method was developed to map the eleven disulfide bonds in Pfs25, a malaria transmission-blocking vaccine candidate. The compact and complex nature of Pfs25 has led to difficulties in prior peptide mapping efforts. Here, we report confirmation of proper disulfide pairing of a recombinant Pfs25, by optimizing denaturation and digestion with trypsin/Lys-C. The digested peptides were separated by reversed phase HPLC to obtain the peptide map and elucidate the disulfide linkages. MSE fragmentation confirmed the digested peptides and disulfide bonds. The eleven disulfide bonds and locations matched the predicted Pvs25 crystal structure, a Pfs25 homologue.


Subject(s)
Disulfides/immunology , Malaria Vaccines/immunology , Malaria/immunology , Peptide Mapping , Protozoan Proteins/immunology , Chromatography, High Pressure Liquid , Disulfides/chemistry , Malaria Vaccines/analysis , Malaria Vaccines/chemical synthesis , Protein Conformation , Protozoan Proteins/analysis , Protozoan Proteins/chemical synthesis , Recombinant Proteins/analysis , Recombinant Proteins/chemical synthesis , Recombinant Proteins/immunology , Tandem Mass Spectrometry
14.
Clin Vaccine Immunol ; 24(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28747311

ABSTRACT

Transmission-blocking vaccines have the potential to accelerate malaria parasite elimination by inducing antibodies that block parasite transmission from humans to mosquitoes. Pfs230, a gametocyte surface protein involved in gamete function, has long been a promising candidate. Due to the large size (3,135 amino acids), complex domains, and repeating 6-cysteine (6-Cys) motifs with a multitude of disulfide bonds, the feasibility of expression of a full-length protein has been difficult. A priority focus, therefore, has been on the generation of single domains, including N-terminal fragments. Here we utilized a heterologous expression system, baculovirus, to produce an N-terminal domain of Pfs230 (Pfs230C1). Pfs230C1 (amino acids 443 to 731) with a polyhistidine affinity tag was expressed in Super Sf9 cells. Since the native host lacks glycosylation machinery, a single N585Q mutation was made to eliminate potential N-linked glycosylation. The expressed protein, purified by nickel affinity, ion exchange, and size exclusion chromatography to >90% purity, was present in monomeric form with an observed mass of 33,510 Da (matching oxidized form). Peptide mapping and disulfide analysis confirmed the proper formation of predicted disulfide bonds. Antibodies, generated against Pfs230C1 in mice, bound to the gametocyte in an immunofluorescence assay (IFA) and demonstrated functional activity in both the standard membrane feeding assay (SMFA) and the exflagellation assay (EXA). The biochemical, biophysical, and immunological results reported herein support the continued advancement of an N-terminal Pfs230 antigen (Pfs230C1) as a component of a transmission-blocking vaccine. Our results also support the continued use of the scalable baculovirus expression system for the generation of complex Plasmodium proteins.

15.
Malar J ; 15(1): 405, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27515826

ABSTRACT

BACKGROUND: Transmission-blocking vaccines (TBVs) have become a focus of strategies to control and eventually eliminate malaria as they target the entry of sexual stage into the Anopheles stephensi mosquito thereby preventing transmission, an essential component of the parasite life cycle. Such vaccines are envisioned as complements to vaccines that target human infection, such as RTS,S as well as drug treatment, and vector control strategies. A number of conserved proteins, including Pfs25, have been identified as promising TBV targets in research or early stage development. Pfs25 is a 25 kDa protein of Plasmodium falciparum expressed on the surface of zygotes and ookinetes. Its complex tertiary structure, including numerous cysteines, has led to difficulties in the expression of a recombinant protein that is homogeneous, with proper conformation, and free of glycosylation, a phenomenon not found in native parasite machinery. METHODS: While the expression and purification of Pfs25 in various systems, has been previously independently reported, here a parallel analysis of Pfs25 is presented to inform on the biochemical features of Pfs25 and their impact on functionality. Three scalable expression systems were used to express, purify, and evaluate Pfs25 both in vitro and in vivo, including the ability of each protein to produce functional antibodies through the standard membrane feeding assay. RESULTS: Through numerous attempts, soluble, monomeric Pfs25 derived from Escherichia coli was not achieved, while Pichia pastoris presented Pfs25 as an inhomogeneous product with glycosylation. In comparison, baculovirus produced a pure, monomeric protein free of glycosylation. The glycosylation present for Pichia produced Pfs25, showed no notable decrease in the ability to elicit transmission reducing antibodies in functional evaluation, while a reduced and alkylated Pfs25 (derived from plant and used as a control) was found to have significantly decreased transmission reducing activity, emphasizing the importance of ensuring correct disulfide stabilized conformation during vaccine design and production. CONCLUSIONS: In this study, the biochemical features of Pfs25, produced from different expression systems, are described along with their impact on the ability of the protein to elicit functional antibodies. Pfs25 expressed using baculovirus and Pichia showed promise as candidates for vaccine development.


Subject(s)
Disease Transmission, Infectious/prevention & control , Malaria Vaccines/immunology , Malaria/prevention & control , Protozoan Proteins/immunology , Recombinant Proteins/immunology , Animals , Antibodies, Protozoan/blood , Baculoviridae/genetics , Baculoviridae/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Malaria Vaccines/administration & dosage , Malaria Vaccines/genetics , Malaria Vaccines/isolation & purification , Mice , Pichia/genetics , Pichia/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/isolation & purification
16.
Anal Biochem ; 437(1): 40-2, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23499969

ABSTRACT

The overall structure of pertussis toxoid has been established by analysis of its tryptic digest using two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS), capillary liquid chromatography-matrix-assisted laser desorption ionization-tandem mass spectrometry (CapLC-MALDI-MS/MS), and ultraperformance liquid chromatography-mass spectrometry(E) (UPLC-MS(E)). In addition to oxidation and hydrolysis of amino acids losses of terminal peptides are observed. On-line UPLC-MS(E) generated a similar sequence coverage as the other two methods that involved off-line fraction collection. In light of recent favorable comparisons to data-dependent acquisition, UPLC-MS(E) should be the initial method of choice for analysis of a peptide mixture of moderate complexity.


Subject(s)
Chromatography, High Pressure Liquid/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry/methods , Toxoids/chemistry , Amino Acid Sequence , Molecular Sequence Data , Toxoids/isolation & purification
17.
Anal Biochem ; 401(2): 295-302, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20206117

ABSTRACT

Pertussis toxoid, an acellular pertussis vaccine prepared by hydrogen peroxide treatment in the presence of Fe(3+), has not been well characterized. Because the toxoid has been a part of the DTaP vaccine for infants, it is of interest and significance to have a clear understanding of its structure. The five subunits of pertussis toxin (PT) have a combined molecular weight of approximately 95,000Da. The peroxide treatment in toxoid formation introduces additional complexity into the protein sequence. To maximize sequence coverage, a two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) approach was used to analyze the tryptic digest of toxoid as a whole. An analytical-scale high-performance liquid chromatography (HPLC) instrument using a pentafluorophenyl (PFP) column was used as the first-dimensional LC for fraction collection. The fractions were then analyzed by nanoLC-MS/MS using a C18 column to acquire collision-activated dissociation (CAD) spectra of the tryptic peptides. It is shown that a PFP column has a different peptide retention specificity from a C18 column. A combination of a PFP column and a C18 column is a viable approach for dispersing peptides in a complex mixture. From the structures of 65 peptides that represented approximately 50% of its sequence, PT was found to have sustained heavy oxidative damages during toxoid preparation. Nearly all methionine, cysteine, and (likely) tryptophan residues were oxidized. Evidence of histidine and tyrosine oxidation was also observed. In addition, a large percentage of asparagine was found hydrolyzed to aspartic acid. These findings corrrelate well with the reduction of PT toxicity by peroxide treatment.


Subject(s)
Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Toxoids/chemistry , Amino Acid Sequence , Molecular Sequence Data , Oxidation-Reduction , Peptides/chemistry
18.
Anal Biochem ; 374(1): 16-24, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-17964272

ABSTRACT

Liquid chromatography-mass spectrometry (LC-MS) with a dual spray electrospray ionization source has been used to measure the molecular weights of pertussis toxin (PT) subunits. Measurement accuracy better than 0.4 Da was achieved for all PT subunits in the molecular weight range of 11,000 to 27,000 Da. At this mass assignment accuracy level, the sequences of the PT subunits investigated in this study are easily determined based on molecular weight alone. The subunits 1, 2, and 5 of PT were observed to undergo oxidation under normal storage conditions as ammonium sulfate suspension at 2 to 8 degrees C. These oxidized subunits can be separated completely or partially by reverse-phase high-performance liquid chromatography (HPLC) from their native counterparts. For the determination of oxidation sites, the oxidized subunits and their nonoxidized counterparts were fraction collected, trypsin digested, and mapped by LC-MS. The oxidized peptides and their nonoxidized counterparts were further studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to confirm their identities. The methionines at position 212 of subunit 1, at position 89 of subunit 2, and at position 40 of subunit 5 were found to be the primary sites of oxidation.


Subject(s)
Chromatography, High Pressure Liquid/methods , Pertussis Toxin/chemistry , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Molecular Sequence Data , Molecular Weight , Oxidation-Reduction , Pertussis Toxin/metabolism , Protein Subunits/chemistry , Spectrometry, Mass, Electrospray Ionization , Trypsin/metabolism
19.
Hum Vaccin ; 3(1): 27-32, 2007.
Article in English | MEDLINE | ID: mdl-17264684

ABSTRACT

The stability of vaccines during storage and handling is a prerequisite for optimal potency at the time of immunization. Meningococcal group C conjugate vaccines have been successfully incorporated in mass immunization programs, however, thus far no long-term real-time stability studies of these vaccines have been reported. Stability of de-O-acetylated group C meningococcal polysaccharide coupled to tetanus toxoid (GCMP-TT) was evaluated in real time on the basis of immunogenicity and physiochemical properties. The vaccine is formulated as a 0.5 mL suspension containing 10 mug GCMP conjugated to 10-20 mug of TT adsorbed on 0.5 mg aluminum in saline. The single dose syringes were stored under refrigeration (5 +/- 3 degrees C) and at room temperature (25 +/- 2 degrees C) for up to 42 months and at elevated temperature (40 +/- 2 degrees C) for up to 6 months. At both refrigerated and room temperatures, no time-dependent change in animal potency was detectable through 42 months. After the nine months maximum recommended storage period at room temperature, 96% of the baseline serum bactericidal antibody (SBA) titer was maintained. Time-dependent decreases in SBA level and anti-GCMP-TT IgG level were observed at 40 +/- 2 degrees C. No changes in GCMP-TT adsorption and pH occurred in all the studies. Loss of integrity increased over six months at 40 +/- 2 degrees C (p = 0.004). Free sugar content did not change over 36 months under refrigeration. GCMP-TT retained immunogenicity and physicochemical properties under refrigeration and at room temperature (25 +/- 2 degrees C) for up to 42 months.


Subject(s)
Meningococcal Vaccines/chemistry , Tetanus Toxoid/chemistry , Adsorption , Animals , Carbohydrates/analysis , Drug Stability , Hot Temperature , Meningococcal Vaccines/immunology , Mice , Tetanus Toxoid/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...