Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 11(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38790360

ABSTRACT

Spinal alignment intricately influences functional independence, particularly in older women with osteopenia experiencing mild neck and back pain. This study elucidates the interplay between spinal alignment, bone mineral density (BMD), and muscle strength in elderly women presenting with mild neck and back pain. Focusing on a cohort of 189 older women, we examined the associations among global tilt (GT), coronal and sagittal alignment, BMD, grip strength, and functional independence as gauged by the Barthel index. Our findings indicate significant associations between functional capacity and grip strength, bone density, GT, and pelvic tilt (PT). Elderly women with a Barthel Index above 80 demonstrated higher grip strength and better bone quality, reflected by less negative average T scores. These individuals also exhibited lower values of GT and PT, suggesting a better sagittal alignment compared to those with a Barthel index of 80 or below. The results highlight that deviations in GT and PT are significantly associated with decreased functional independence. These insights emphasize the importance of maintaining optimal spinal alignment and muscle strength to support functional independence in elderly women. This study underscores the potential for targeted interventions that improve postural stability and manage pain effectively in this vulnerable population.

2.
J Clin Med ; 13(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38592670

ABSTRACT

Background: Early-onset myopia increases the risk of irreversible high myopia. Methods: This study systematically evaluated the efficacy and safety of low-dose atropine for myopia control in children with premyopia through meta-analysis using random-effects models. Effect sizes were calculated using risk ratios (RRs) with 95% confidence intervals (CIs). Comprehensive searches of PubMed, EMBASE, Cochrane CENTRAL, and ClinicalTrials.gov were conducted until 20 December 2023, without language restrictions. Results: Four studies involving 644 children with premyopia aged 4-12 years were identified, with atropine concentrations ranging from 0.01% to 0.05%. The analysis focused on myopia incidence and atropine-related adverse events. Lower myopia incidence (RR, 0.62; 95% CI, 0.40-0.97 D/y; p = 0.03) and reduction in rapid myopia shift (≥0.5 D/1y) (RR, 0.50; 95% CI, 0.26-0.96 D/y; p < 0.01) were observed in the 12-24-month period. Spherical equivalent and axial length exhibited attenuated progression in the atropine group. No major adverse events were detected in either group, whereas the incidence of photophobia and allergic conjunctivitis did not vary in the 12-24-month period. Conclusions: Our meta-analysis supports atropine's efficacy and safety for delaying myopia incidence and controlling progression in children with premyopia. However, further investigation is warranted due to limited studies.

3.
Front Pharmacol ; 15: 1343698, 2024.
Article in English | MEDLINE | ID: mdl-38318144

ABSTRACT

Purpose: To comprehensively assess rebound effects by comparing myopia progression during atropine treatment and after discontinuation. Methods: A systematic search of PubMed, EMBASE, Cochrane CENTRAL, and ClinicalTrials.gov was conducted up to 20 September 2023, using the keywords "myopia," "rebound," and "discontinue." Language restrictions were not applied, and reference lists were scrutinized for relevant studies. Our study selection criteria focused on randomized control trials and interventional studies involving children with myopia, specifically those treated with atropine or combination therapies for a minimum of 6 months, followed by a cessation period of at least 1 month. The analysis centered on reporting annual rates of myopia progression, considering changes in spherical equivalent (SE) or axial length (AL). Data extraction was performed by three independent reviewers, and heterogeneity was assessed using I2 statistics. A random-effects model was applied, and effect sizes were determined through weighted mean differences with 95% confidence intervals Our primary outcome was the evaluation of rebound effects on spherical equivalent or axial length. Subgroup analyses were conducted based on cessation and treatment durations, dosage levels, age, and baseline SE to provide a nuanced understanding of the data. Results: The analysis included 13 studies involving 2060 children. Rebound effects on SE were significantly higher at 6 months (WMD, 0.926 D/y; 95%CI, 0.288-1.563 D/y; p = .004) compared to 12 months (WMD, 0.268 D/y; 95%CI, 0.077-0.460 D/y; p = .006) after discontinuation of atropine. AL showed similar trends, with higher rebound effects at 6 months (WMD, 0.328 mm/y; 95%CI, 0.165-0.492 mm/y; p < .001) compared to 12 months (WMD, 0.121 mm/y; 95%CI, 0.02-0.217 mm/y; p = .014). Sensitivity analyses confirmed consistent results. Shorter treatment durations, younger age, and higher baseline SE levels were associated with more pronounced rebound effects. Transitioning or stepwise cessation still caused rebound effects but combining optical therapy with atropine seemed to prevent the rebound effects. Conclusion: Our meta-analysis highlights the temporal and dose-dependent rebound effects after discontinuing atropine. Individuals with shorter treatment durations, younger age, and higher baseline SE tend to experience more significant rebound effects. Further research on the rebound effect is warranted. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=463093], identifier [registration number].

4.
J Clin Med ; 13(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38202060

ABSTRACT

Despite high discontinuation rates for myopia optical interventions, limited attention has been given to the potential rebound effects post-discontinuation. This systematic review aims to assess the extent of the rebound effects following the cessation of common clinical optical myopia-control interventions in children. A comprehensive search of PubMed, Embase, Cochrane CENTRAL, and ClinicalTrials.gov was conducted from inception to October 2023. The rebound effects, defined as changes in the axial length or spherical equivalent during and after treatment cessation, were categorized into four levels. These studies encompassed 703 participants and spanned from 2019 to 2023, with durations of treatment and cessation ranging from 6 months to 3.5 years and from 2 weeks to 5 years, respectively. This review, encompassing 14 studies, revealed a predominant strong rebound effect in orthokeratology (8 studies), a weak rebound effect in multifocal soft contact lenses (4 studies), and a variable rebound effect in peripheral-plus spectacle lenses (2 studies). Notably, with the increasing cessation duration, the rebound effects diminished, potentially linked to the reversal of choroidal thickening and the disappearance of peripheral myopic defocus. In conclusion, a temporal trend of rebound effects exists in all three myopia optical interventions, possibly contributing to their myopia control mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL