Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Stem Cell Res Ther ; 15(1): 265, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39183328

ABSTRACT

BACKGROUND: Xerostomia is a pathological condition characterized by decreased salivation due to salivary gland dysfunction and is frequently attributed to irreversible damage as a side effect of radiation therapy. Stem cell-derived organoid therapy has garnered attention as a promising avenue for resolving this issue. However, Matrigel, a hydrogel commonly used in organoid culture, is considered inappropriate for clinical use due to its undefined composition and immunogenicity. In this study, we aimed to develop a method for culturing collagen-based human salivary gland organoids (hSGOs) suitable for clinical applications and evaluated their therapeutic effectiveness. METHODS: Human salivary gland stem cells were isolated from the salivary gland tissues and cultured in both Matrigel and collagen. We compared the gene and protein expression patterns of salivary gland-specific markers and measured amylase activity in the two types of hSGOs. To evaluate the therapeutic effects, we performed xenogeneic and allogeneic transplantation using human and mouse salivary gland organoids (hSGOs and mSGOs), respectively, in a mouse model of radiation-induced xerostomia. RESULTS: hSGOs cultured in Matrigel exhibited self-renewal capacity and differentiated into acinar and ductal cell lineages. In collagen, they maintained a comparable self-renewal ability and more closely replicated the characteristics of salivary gland tissue following differentiation. Upon xenotransplantation of collagen-based hSGOs, we observed engraftment, which was verified by detecting human-specific nucleoli and E-cadherin expression. The expression of mucins, especially MUC5B, within the transplanted hSGOs suggested a potential improvement in the salivary composition. Moreover, the allograft procedure using mSGOs led to increased salivation, validating the efficacy of our approach. CONCLUSIONS: This study showed that collagen-based hSGOs can be used appropriately in clinical settings and demonstrated the effectiveness of an allograft procedure. Our research has laid the groundwork for the future application of collagen-based hSGOs in allogeneic clinical trials.


Subject(s)
Organoids , Salivary Glands , Xerostomia , Xerostomia/therapy , Xerostomia/etiology , Humans , Salivary Glands/radiation effects , Animals , Mice , Collagen/metabolism , Cell Differentiation , Laminin/chemistry , Proteoglycans/metabolism , Drug Combinations
2.
Antibiotics (Basel) ; 13(7)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39061308

ABSTRACT

Acetic acid bacteria (AAB) are major contributors to the production of fermented vinegar, offering various cultural, culinary, and health benefits. Although the residual unpasteurized AAB after vinegar production are not pathogens, these are necessary and require safety evaluations, including antibiotic resistance, before use as a starter. In this research, we investigated the antibiotic resistance profiles of 26 AAB strains, including various species of Komagataeibacter and Acetobacter, against 10 different antibiotics using the E-test method. All strains exhibited resistance to aztreonam and clindamycin. Komagataeibacter species demonstrated a 50% resistance rate to ciprofloxacin, analogous to Acetobacter species, but showed twice the resistance rates to chloramphenicol and erythromycin. Genomic analysis of K. saccharivorans CV1 identified intrinsic resistance mechanisms, such as multidrug efflux pumps, thereby enhancing our understanding of antibiotic resistance in acetic acid-producing bacteria. These findings enhance understanding of antibiotic resistance in AAB for food safety and new antimicrobial strategies, suggesting the need for standardized testing methods and molecular genetic study.

3.
Elife ; 122024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980302

ABSTRACT

Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.


Subject(s)
Indican , Kidney Failure, Chronic , Receptors, Aryl Hydrocarbon , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Kidney Failure, Chronic/immunology , Kidney Failure, Chronic/metabolism , Humans , Mice , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Arachidonic Acid/metabolism , Male , Immunity, Innate/drug effects , Mice, Inbred C57BL , Arachidonate 5-Lipoxygenase/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Trained Immunity
4.
Tissue Eng Regen Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955905

ABSTRACT

BACKGROUND: This study aimed to identify glycine analogs conducive to the formation of cell-absorbable nanocomplexes, enhancing collagen synthesis and subsequent osteogenesis in combination with BMP2 for improved bone regeneration. METHODS: Glycine and its derivatives were assessed for their effects on osteogenic differentiation in MC3T3-E1 cells and human bone marrow mesenchymal stem cells (BMSCs) under osteogenic conditions or with BMP2. Osteogenic differentiation was assessed through alkaline phosphatase staining and real-time quantitative polymerase chain reaction (RT-qPCR). Nanocomplex formation was examined via scanning electron microscopy, circular dichroism, and ultraviolet-visible spectroscopy. In vivo osteogenic effects were validated using a mouse calvarial defect model, and bone regeneration was evaluated through micro-computed tomography and histomorphometric analysis. RESULTS: Glycine, glycine methyl ester, and glycinamide significantly enhanced collagen synthesis and ALP activity in conjunction with an osteogenic medium (OSM). GA emerged as the most effective inducer of osteoblast differentiation marker genes. Combining GA with BMP2 synergistically stimulated ALP activity and the expression of osteoblast markers in both cell lines. GA readily formed nanocomplexes, facilitating cellular uptake through strong electrostatic interactions. In an in vivo calvarial defect mouse model, the GA and BMP2 combination demonstrated enhanced bone volume, bone volume/tissue volume ratio, trabecular numbers, and mature bone formation compared to other combinations. CONCLUSION: GA and BMP2 synergistically promoted in vitro osteoblast differentiation and in vivo bone regeneration through nanocomplex formation. This combination holds therapeutic promise for individuals with bone defects, showcasing its potential for clinical intervention.

5.
Exp Mol Med ; 56(8): 1776-1790, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39085353

ABSTRACT

Branched-chain amino acids (BCAAs), particularly leucine, are indispensable AAs for immune regulation through metabolic rewiring. However, the molecular mechanism underlying this phenomenon remains unclear. Our investigation revealed that T-cell receptor (TCR)-activated human CD4+ T cells increase the expression of BCAT1, a cytosolic enzyme responsible for BCAA catabolism, and SLC7A5, a major BCAA transporter. This upregulation facilitates increased leucine influx and catabolism, which are particularly crucial for Th17 responses. Activated CD4+ T cells induce an alternative pathway of cytosolic leucine catabolism, generating a pivotal metabolite, ß-hydroxy ß-methylbutyric acid (HMB), by acting on BCAT1 and 4-hydroxyphenylpyruvate dioxygenase (HPD)/HPD-like protein (HPDL). Inhibition of BCAT1-mediated cytosolic leucine metabolism, either with BCAT1 inhibitor 2 (Bi2) or through BCAT1, HPD, or HPDL silencing using shRNA, attenuates IL-17 production, whereas HMB supplementation abrogates this effect. Mechanistically, HMB contributes to the regulation of the mTORC1-HIF1α pathway, a major signaling pathway for IL-17 production, by increasing the mRNA expression of HIF1α. This finding was corroborated by the observation that treatment with L-ß-homoleucine (LßhL), a leucine analog and competitive inhibitor of BCAT1, decreased IL-17 production by TCR-activated CD4+ T cells. In an in vivo experimental autoimmune encephalomyelitis (EAE) model, blockade of BCAT1-mediated leucine catabolism, either through a BCAT1 inhibitor or LßhL treatment, mitigated EAE severity by decreasing HIF1α expression and IL-17 production in spinal cord mononuclear cells. Our findings elucidate the role of BCAT1-mediated cytoplasmic leucine catabolism in modulating IL-17 production via HMB-mediated regulation of mTORC1-HIF1α, providing insights into its relevance to inflammatory conditions.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Leucine , Mechanistic Target of Rapamycin Complex 1 , Signal Transduction , Th17 Cells , Mechanistic Target of Rapamycin Complex 1/metabolism , Leucine/metabolism , Leucine/pharmacology , Th17 Cells/metabolism , Th17 Cells/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Humans , Animals , Mice , Cytosol/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Transaminases
6.
J Microbiol Biotechnol ; 34(7): 1401-1409, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38881180

ABSTRACT

Postbiotics have various functional effects, such as antioxidant, anti-inflammatory, and anti-obesity. Levilactobacillus brevis BK3, the subject of this study, was derived from lactic acid bacteria isolated from Kimchi, a traditional Korean fermented food. The antioxidant activity of BK3 was confirmed through the measurements of 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and total antioxidant capacity (TAC). The wrinkle improvement effect was validated by assessing elastase inhibitory activity and collagenase inhibitory activity. The intracellular activity was confirmed using human keratinocytes (HaCaT) and human fibroblasts (HFF-1). BK3 protects skin cells from oxidative stress induced by H2O2 and reduces intracellular reactive oxygen species (ROS) production. In addition, the expressions of the antioxidant genes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were upregulated. Meanwhile, matrix metalloproteinase-1 (MMP-1) and collagen type I alpha 1 (COL1A1), involved in collagen degradation and synthesis, were significantly regulated. These results suggest the possibility of utilizing BK3 as a functional ingredient with antioxidant and wrinkle-improving effects.


Subject(s)
Antioxidants , Fibroblasts , Hydrogen Peroxide , Keratinocytes , Levilactobacillus brevis , Oxidative Stress , Reactive Oxygen Species , Superoxide Dismutase , Humans , Oxidative Stress/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Reactive Oxygen Species/metabolism , Levilactobacillus brevis/metabolism , Superoxide Dismutase/metabolism , Catalase/metabolism , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Collagen Type I/metabolism , Fermented Foods/microbiology , Skin/microbiology , Skin/drug effects , Cell Line , Collagen Type I, alpha 1 Chain , Glutathione Peroxidase/metabolism , Probiotics/pharmacology
7.
Int J Biol Macromol ; 271(Pt 1): 132564, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782324

ABSTRACT

Recently, the incidence of Achilles tendon ruptures (ATRs) has become more common, and repair surgery using a bioabsorbable suture is generally preferred, particularly in the case of healthy patients. Sutures composed of poly(lactic-co-glycolic acid) (PLGA) are commonly used in ATR surgeries. Nevertheless, owing to the inherent limitations of PLGA, novel bioabsorbable sutures that can accelerate Achilles tendon healing are sought. Recently, several studies have demonstrated the beneficial effects of atelocollagen on tendon healing. In this study, poly(3,4-dihydroxy-L-phenylalanine) (pDOPA), a hydrophilic biomimetic material, was used to modify the hydrophobic surface of a PLGA suture (Vicryl, VC) for the stable coating of atelocollagen on its surface. The main objective was to fabricate an atelocollagen-coated VC suture and evaluate its performance in the healing of Achilles tendon using a rat model of open repair for ATR. Structural analyses of the surface-modified suture indicated that the collagen was successfully coated on the VC/pDOPA suture. Postoperative in vivo biomechanical analysis, histological evaluation, ultrastructural/morphological analyses, and western blotting confirmed that the tendons in the VC/pDOPA/Col group exhibit superior healing than those in the VC and VC/pDOPA groups after 1 and 6 weeks following the surgery. The this study suggests that atelocollagen-coated PLGA/pDOPA sutures are preferable for future medical applications, especially in the repair of ATR.


Subject(s)
Achilles Tendon , Collagen , Sutures , Wound Healing , Animals , Achilles Tendon/surgery , Achilles Tendon/drug effects , Achilles Tendon/injuries , Rats , Wound Healing/drug effects , Collagen/chemistry , Male , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Absorbable Implants , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Rats, Sprague-Dawley , Disease Models, Animal , Regeneration/drug effects , Tendon Injuries/surgery
8.
Food Sci Biotechnol ; 33(5): 1093-1101, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38440687

ABSTRACT

The physicochemical properties of scones made with alternative sweeteners (stevia, sucralose, and allulose) at different ratios (30, 70, and 100%) with or without xanthan gum were investigated. Nineteen samples were evaluated for crust color, moisture content, specific volume, and texture properties. Scones with allulose had lower L values but higher a and b values due to the Maillard and caramelization reactions. The moisture content increased with xanthan gum addition, thereby decreasing the specific volume. The sample with 30% of stevia (ST30), 30% of sucralose (SC30), and 30% of allulose and xanthan gum (AL30G) had similar characteristics to the sample with sucrose (CON). In the consumer acceptance test, CON was the most preferred, but ST30 showed no significant difference. AL30G was less preferred because of its lack of sweetness. Overall, the physicochemical properties and consumer acceptance of ST30 were closest to those of CON, suggesting its potential use in scone products. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01416-9.

10.
Nutrients ; 16(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257133

ABSTRACT

The escalating prevalence of metabolic diseases and an aging demographic has been correlated with a concerning rise in Alzheimer's disease (AD) incidence. This study aimed to access the protective effects of curcumin, a bioactive flavonoid from turmeric, on spatial memory, metabolic functions, and the regulation of the gut microbiome in AD-induced (3xTg-AD) mice fed with either a normal chow diet (NCD) or a high-fat high-sugar diet (HFHSD). Our findings revealed an augmented susceptibility of the HFHSD-fed 3xTg-AD mice for weight gain and memory impairment, while curcumin supplementation demonstrated a protective effect against these changes. This was evidenced by significantly reduced body weight gain and improved behavioral and cognitive function in the curcumin-treated group. These improvements were substantiated by diminished fatty acid synthesis, altered cholesterol metabolism, and suppressed adipogenesis-related pathways in the liver, along with modified synaptic plasticity-related pathways in the brain. Moreover, curcumin enriched beneficial gut microbiota, including Oscillospiraceae and Rikenellaceae at the family level, and Oscillibacter, Alistipes, Pseudoflavonifractor, Duncaniella, and Flintibacter at the genus level. The observed alteration in these gut microbiota profiles suggests a potential crosswalk in the liver and brain for regulating metabolic and cognitive functions, particularly in the context of obesity-associated cognitive disfunction, notably AD.


Subject(s)
Alzheimer Disease , Curcumin , Gastrointestinal Microbiome , Animals , Mice , Sugars , Curcumin/pharmacology , Spatial Memory , Alzheimer Disease/drug therapy , Diet, High-Fat/adverse effects , Bacteroidetes
11.
Sci Rep ; 14(1): 2134, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38273006

ABSTRACT

This study investigated the effects of supplementation of low-temperature probiotics isolated from the intestines of olive flounder on the growth performance, digestibility, and regulation of intestinal microbiota and the expression of genes related to growth, immunity, and apoptosis in olive flounder. Bacteria showing high growth at approximately 15-20 °C, which is the temperature of olive flounder culture, were isolated and confirmed to be Pseudomonas species through 16S rRNA gene sequence analysis. Whole-genome sequencing revealed that the strain has a 6,195,122 bp single circular chromosome and a guanine-cytosine content of 59.9%. In the feeding trial, supplementation with 1 × 108 CFU/g of the isolate strain positively modulated growth performances, digestive enzyme activity, and gut microbiota composition of olive flounder. RT-qPCR for the comparison of growth, immunity, and apoptosis-related gene expression levels showed no significant differences between the groups. Therefore, the isolated host-associated low-temperature probiotics improved the growth performance of olive flounder by causing positive changes in digestive activity and intestinal microbial composition without affecting host gene expression.


Subject(s)
Fish Diseases , Flounder , Probiotics , Animals , Aquaculture , Fish Diseases/microbiology , Probiotics/pharmacology , RNA, Ribosomal, 16S/genetics , Temperature
12.
J Photochem Photobiol B ; 250: 112831, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134574

ABSTRACT

Cancer is a life-threatening disease when it is diagnosed at a late stage or treatment procedures fail. Inhibiting cancer cells in the tumor environment is a significant challenge for anticancer therapy. The photothermal effects of nanomaterials are being studied as a new cancer treatment. In this work, rhenium disulfide (ReS2) nanosheets were made by liquid exfoliation with gum arabic (GA) and coated with silver nanoparticles (AgNPs) to produce reactive oxygen species that destroy cancer cells. The synthesized AgNP-GA-ReS2 NPs were characterized using UV, DLS, SEM, TEM, and photothermal studies. According to the DLS findings, the NPs were about 216 nm in size and had a zeta potential of 76 mV. The TEM and SEM analyses revealed that the GA-ReS2 formed single-layered nanosheets on which the AgNPs were distributed. The photothermal effects of the AgNP-GA-ReS2 NPs at 50 µg/mL were tested with an 808 nm laser at 1.2 W cm-2, and they reached 55.8 °C after 5 min of laser irradiation. MBA-MB-231 cells were used to test the cytotoxicity of the newly designed AgNP-GA-ReS2 NPs with and without laser irradiation for 5 min. At 50 µg/mL, the AgNP-GA-ReS2 showed cytotoxicity, which was confirmed with calcein and EtBr staining. The DCFH-DA and flow cytometry analyses demonstrated that AgNP-GA-ReS2 nanosheets under NIR irradiation generated ROS with high anticancer activity, in addition to the photothermal effects.


Subject(s)
Metal Nanoparticles , Neoplasms , Rhenium , Humans , Metal Nanoparticles/toxicity , Silver/pharmacology
13.
J Hosp Palliat Care ; 26(4): 149-159, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38075589

ABSTRACT

The Spiritual Care Guide in Hospice∙Palliative Care is evidence-based and focuses on the universal and integral aspects of human spirituality-such as meaning and purpose, interconnectedness, and transcendence-which go beyond any specific religion. This guide was crafted to improve the spiritual well-being of adult patients aged 19 and older, as well as their families, who are receiving end-of-life care. The provision of spiritual care in hospice and palliative settings aims to assist patients and their families in finding life's meaning and purpose, restoring love and relationships, and helping them come to terms with death while maintaining hope. It is recommended that spiritual needs and the interventions provided are periodically reassessed and evaluated, with the findings recorded. Additionally, hospice and palliative care teams are encouraged to pursue ongoing education and training in spiritual care. Although challenges exist in universally applying this guide across all hospice and palliative care organizations in Korea-due to varying resources and the specific environments of medical institutions-it is significant that the Korean Society for Hospice and Palliative Care has introduced a spiritual care guide poised to enhance the spiritual well-being and quality of care for hospice and palliative care patients.

14.
Bioengineering (Basel) ; 10(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38136004

ABSTRACT

Poly(glycerol sebacate) is a biocompatible elastomer that has gained increasing attention as a potential biomaterial for tissue engineering applications. In particular, PGS is capable of providing shape memory effects and allows for a free form, which can remember the original shape and obtain a temporary shape under melting point and then can recover its original shape at body temperature. Because these properties can easily produce customized shapes, PGS is being coupled with implants to offer improved fixation and maintenance of implants for fractures of osteoporosis bone. Herein, this study fabricated the OP implant with a PGS membrane and investigated the potential of this coupling. Material properties were characterized and compared with various PGS membranes to assess features such as control of curing temperature, curing time, and washing time. Based on the ISO 10993-5 standard, in vitro cell culture studies with C2C12 cells confirmed that the OP implant coupled with PGS membrane showed biocompatibility and biomechanical experiments indicated significantly increased pullout strength and maintenance. It is believed that this multifunctional OP implant will be useful for bone tissue engineering applications.

15.
Biology (Basel) ; 12(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37998042

ABSTRACT

Two novel strains of Rummeliibacillus sp. and Microbacterium sp. were identified from the intestine of olive flounder (Paralichthys olivaceus) and characterized in vitro as potential probiotics. Feeds without probiotic and with a 50:50 mixture of these two strains (1 × 108 CFU/g feed) were denoted as the control and Pro diets, respectively. Three randomly selected tanks (20 flounders/tank, ~11.4 g each) were used for each diet replication. After 8 weeks of feeding, the growth and feed utilization of the flounder in the Pro group improved (p < 0.05) compared to the control. Among four immune parameters, only myeloperoxidase activity was elevated in the Pro group. Serum biochemistry, intestinal microbial richness (Chao1), and diversity (Shannon index) remained unchanged (p ≥ 0.05), but phylogenetic diversity was enriched in the Pro fish intestine. Significantly lower Firmicutes and higher Proteobacteria were found in the Pro diet; the genus abundance in the control and Pro was as follows: Staphylococcus > Lactobacillus > Corynebacterium and Lactobacillus > Staphylococcus > Corynebacterium, respectively. Microbial linear discriminant scores and a cladogram analysis showed significant modulation. Therefore, the combination of two host-associated probiotics improved the growth and intestinal microbial population of flounder and could be supplemented in the Korean flounder industry.

16.
Orthop J Sports Med ; 11(10): 23259671231200933, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37868218

ABSTRACT

Background: There is growing interest in nonoperative treatment for the management of Achilles tendon ruptures (ATRs). However, nonoperative treatment is limited by the risk of tendon reruptures and low satisfaction rates. Recently, atelocollagen injections have been reported to have beneficial effects on tendon healing. Purpose: To evaluate the beneficial effects of injected atelocollagen on Achilles tendon healing and investigate the mechanism of atelocollagen on tendon healing. Study Design: Controlled laboratory study. Methods: Percutaneous tenotomy of the right Achilles tendon in 66 rats was performed. The animals were equally divided into the noninjection group (NG) and the collagen injection group (CG). At 1, 3, and 6 weeks, the Achilles functional index, cross-sectional area, load to failure, stiffness, stress, and the modified Bonar score were assessed. Transmission electron microscopy, western blotting, and immunohistochemistry were also performed. Results: The Achilles functional index (-6.8 vs -43.0, respectively; P = .040), load to failure (42.1 vs 27.0 N, respectively; P = .049), and stiffness (18.8 vs 10.3 N/mm, respectively; P = .049) were higher in the CG than those in the NG at 3 weeks. There were no significant differences in histological scores between the 2 groups. Transmission electron microscopy analysis showed that the mean diameter of collagen fibrils in the CG was greater than that in the NG at 3 weeks (117.2 vs 72.6 nm, respectively; P < .001) and 6 weeks (202.1 vs 144.0 nm, respectively; P < .001). Western blot analysis showed that the expression of collagen type I in the CG was higher than that in the NG at 1 week (P = .005) and 6 weeks (P = .001). Conclusion: An atelocollagen injection had beneficial effects on the healing of nonoperatively treated Achilles tendon injuries. The Achilles tendon of CG rats exhibited better functional, biomechanical, and morphological outcomes compared with NG rats. The molecular data indicated that the mechanism of atelocollagen injections may be associated with an increased amount of collagen type I. Clinical Relevance: An atelocollagen injection might be a good adjuvant option for the nonoperative treatment of ATRs.

17.
Obstet Gynecol Sci ; 66(6): 518-528, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37465847

ABSTRACT

Since its introduction, laparoscopic surgery has been often preferred over open surgery in obstetrics and gynecology due to its advantages, such as less bleeding, lower incidence of adhesions, reduced postoperative pain, short hospital stay, and quick return to daily life. However, in the case of complex surgeries, laparoscopy presented some limitations. Nonetheless, since the 1980s, medical robots have been introduced to overcome the technical limitations of laparoscopy and start a new age for minimally invasive surgery. In this review, we explore the indications and advantages and disadvantages of robotic surgery in the field of gynecology, and try to assess the recent trend of robotic surgery.

18.
Nat Commun ; 14(1): 3746, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353518

ABSTRACT

Brown adipose tissue (BAT) has abundant mitochondria with the unique capability of generating heat via uncoupled respiration. Mitochondrial uncoupling protein 1 (UCP1) is activated in BAT during cold stress and dissipates mitochondrial proton motive force generated by the electron transport chain to generate heat. However, other mitochondrial factors required for brown adipocyte respiration and thermogenesis under cold stress are largely unknown. Here, we show LETM1 domain-containing protein 1 (LETMD1) is a BAT-enriched and cold-induced protein required for cold-stimulated respiration and thermogenesis of BAT. Proximity labeling studies reveal that LETMD1 is a mitochondrial matrix protein. Letmd1 knockout male mice display aberrant BAT mitochondria and fail to carry out adaptive thermogenesis under cold stress. Letmd1 knockout BAT is deficient in oxidative phosphorylation (OXPHOS) complex proteins and has impaired mitochondrial respiration. In addition, BAT-specific Letmd1 deficient mice exhibit phenotypes identical to those observed in Letmd1 knockout mice. Collectively, we demonstrate that the BAT-enriched mitochondrial matrix protein LETMD1 plays a tissue-autonomous role that is essential for BAT mitochondrial function and thermogenesis.


Subject(s)
Adipose Tissue, Brown , Mitochondrial Proteins , Thermogenesis , Animals , Male , Mice , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
19.
Antioxidants (Basel) ; 12(6)2023 May 27.
Article in English | MEDLINE | ID: mdl-37371895

ABSTRACT

Dietary interventions with bioactive compounds have been found to suppress the accumulation of senescent cells and senescence-associated secretory phenotypes (SASPs). One such compound, curcumin (CUR), has beneficial health and biological effects, including antioxidant and anti-inflammatory properties, but its ability to prevent hepatic cellular senescence is unclear. The objective of this study was to investigate the effects of dietary CUR as an antioxidant on hepatic cellular senescence and determine its benefits on aged mice. We screened the hepatic transcriptome and found that CUR supplementation led to the downregulation of senescence-associated hepatic gene expressions in both usually fed and nutritionally challenged aged mice. Our results showed that CUR supplementation enhanced antioxidant properties and suppressed mitogen-activated protein kinase (MAPK) signaling cascades in the liver, particularly c-Jun N-terminal kinase (JNK) in aged mice and p38 in diet-induced obese aged mice. Furthermore, dietary CUR decreased the phosphorylation of nuclear factor-κB (NF-κB), a downstream transcription factor of JNK and p38, and inhibited the mRNA expression of proinflammatory cytokines and SASPs. The potency of CUR administration was demonstrated in aged mice via enhanced insulin homeostasis along with declined body weight. Taken together, these results suggest that CUR supplementation may be a nutritional strategy to prevent hepatic cellular senescence.

20.
Int J Biol Macromol ; 244: 124982, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37244326

ABSTRACT

Transition metal dichalcogenides (TMDs) have gained considerable attention for a broad range of applications, including cancer therapy. Production of TMD nanosheets using liquid exfoliation provides an inexpensive and facile route to achieve high yields. In this study, we developed TMD nanosheets using gum arabic as an exfoliating and stabilizing agent. Different types of TMDs, including MoS2, WS2, MoSe2, and WSe2 nanosheets, were produced using gum arabic and were characterized physicochemically. The developed gum arabic TMD nanosheets exhibited a remarkable photothermal absorption capacity in the near-infrared (NIR) region (808 nm and 1 W⋅cm-2). The drug doxorubicin was loaded on the gum arabic-MoSe2 nanosheets (Dox-G-MoSe2), and the anticancer activity was evaluated using MDA-MB-231 cells and a water-soluble tetrazolium salt (WST-1) assay, live and dead cell assays, and flow cytometry. Dox-G-MoSe2 significantly inhibited MDA-MB-231 cancer cell proliferation under the illumination of an NIR laser at 808 nm. These results indicate that Dox-G-MoSe2 is a potentially valuable biomaterial for breast cancer therapy.


Subject(s)
Breast Neoplasms , Organoselenium Compounds , Humans , Female , Gum Arabic , Molybdenum/chemistry , Morpholines , Breast Neoplasms/drug therapy , Doxorubicin/pharmacology , Doxorubicin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL