Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Exp Neurobiol ; 33(2): 99-106, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38724479

ABSTRACT

Anosmia, characterized by the loss of smell, is associated not only with dysfunction in the peripheral olfactory system but also with changes in several brain regions involved in olfactory processing. Specifically, the orbitofrontal cortex is recognized for its pivotal role in integrating olfactory information, engaging in bidirectional communication with the primary olfactory regions, including the olfactory cortex, amygdala, and entorhinal cortex. However, little is known about alterations in structural connections among these brain regions in patients with anosmia. In this study, high-resolution T1-weighted images were obtained from participants. Utilizing the volumes of key brain regions implicated in olfactory function, we employed a structural covariance approach to investigate brain reorganization patterns in patients with anosmia (n=22) compared to healthy individuals (n=30). Our structural covariance analysis demonstrated diminished connectivity between the amygdala and entorhinal cortex, components of the primary olfactory network, in patients with anosmia compared to healthy individuals (z=-2.22, FDR-corrected p=0.039). Conversely, connectivity between the orbitofrontal cortex-a major region in the extended olfactory network-and amygdala was found to be enhanced in the anosmia group compared to healthy individuals (z=2.32, FDR-corrected p=0.039). However, the structural connections between the orbitofrontal cortex and entorhinal cortex did not differ significantly between the groups (z=0.04, FDR-corrected p=0.968). These findings suggest a potential structural reorganization, particularly of higher-order cortical regions, possibly as a compensatory effort to interpret the limited olfactory information available in individuals with olfactory loss.

2.
Carbohydr Polym ; 335: 122047, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38616086

ABSTRACT

Metal-organic framework (MOF) particles are one of the most promising adsorbents for removing organic contaminants from wastewater. However, powder-type MOF particles face challenges in terms of utilization and recovery. In this study, a novel bead-type adsorbent was prepared using activated carbon based on the zeolitic imidazolate framework-8 (AC-ZIF-8) and a regenerated cellulose hydrogel for dye removal. AC-ZIF-8 particles with a large surface area were obtained by carbonization and chemical activation with KOH. The AC-ZIF-8 powders were efficiently immobilized in hydrophilic cellulose hydrogel beads via cellulose dissolution/regeneration. The prepared AC-ZIF-8/cellulose hydrogel (AC-ZIF-8/CH) composite beads exhibit a large specific surface area of 1412.8 m2/g and an excellent maximum adsorption capacity of 565.13 mg/g for Rhodamine B (RhB). Moreover, the AC-ZIF-8/CH beads were effective over a wide range of pH, temperatures and for different types of dyes. These composite beads also offer economic benefits through desorption of dyes for recycling. The AC-ZIF-8/CH beads can be produced in substantial amounts and used as fillers in a fixed-bed column system, which can purify the continuous inflow of dye solutions. These findings suggest that our simple approach for preparing high-performance adsorbent beads will broaden the application of dye adsorbents, oil-water separation, and catalysts.

3.
Sleep ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666299

ABSTRACT

STUDY OBJECTIVES: Shift work interferes with circadian rhythms, affecting sleep quality and cognitive function. Poor sleep quality in shift workers can impair psychomotor performance due to fatigue and sleepiness, increasing the risk of errors, accidents, and reduced productivity. Given the potential for atrophic changes in the hippocampus due to sleep disturbances, our study investigates how poor sleep quality correlates with hippocampal structural alterations and impacts psychomotor performance among shift workers. METHODS: We recruited 100 shift workers, classifying them based on sleep quality into two groups: good sleep-SW group (n = 59) and poor sleep-SW group (n = 41). Sleep quality was assessed using both 7-day actigraphy for sleep efficiency and the Pittsburgh Sleep Quality Index. A control group of 106 non-shift workers without sleep problems (non-SW group) was also included for comparison. The outcome measures were psychomotor speed and hippocampal volumes, both total and by subfield. RESULTS: The poor sleep-SW group showed significantly smaller hippocampal volumes than both the good sleep-SW group (P<0.001) and the non-SW group (P=0.003). Longer shift work years correlated with greater reductions in hippocampal volume in this group (r=-0.42, P=0.009), unlike in the good sleep-SW group (r=0.08, P=0.541). Furthermore, they demonstrated declines in psychomotor speed relative to the non-SW group (P=0.006), which correlated with smaller hippocampal volumes (r=0.37, P=0.020). CONCLUSIONS: Shift workers with poor sleep quality exhibit significant hippocampal volume reductions and psychomotor speed decline, underscoring the importance of early intervention and support for sleep issues in this population.

4.
ACS Omega ; 9(12): 14356-14367, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559960

ABSTRACT

Oat saponins are composed of triterpenoid and steroidal saponins, and their potential biological activities, such as antibacterial, antifungicidal, osteogenic, and anticancer activities, have been reported. In this study, qualitative and quantitative analyses of oat saponins were conducted by using UPLC-QToF-MS and UPLC-Triple Q-MS/MS. A total of 22 saponins were analyzed in seven Korean oat cultivars. Among them, 7 saponins were identified as new compounds in this source, which were tentatively confirmed as nuatigenin-type saponins with 26-O-diglucoside and 3-O-malonylglucoside forms and (25S)-furost-5-en-3ß,22,26-triol-type saponins. In addition, the total content of these saponins ranged from 70.61 to 141.38 mg/100 g dry weight, and it was affected by the type of oat cultivar and the presence or absence of hulling. These detailed profiles will be suggested as fundamental data for breeding superior oat cultivars, evaluating of related products, and various industries.

5.
Oncol Lett ; 27(4): 158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38426156

ABSTRACT

Exosomal microRNAs (miRNAs) are closely related to drug resistance in patients with breast cancer (BC); however, only a few roles of the exosomal miRNA-target gene networks have been clinically implicated in drug resistance in BC. Therefore, the present study aimed to identify the differential expression of exosomal miRNAs associated with drug resistance and their target mRNAs. In vitro microarray analysis was used to verify differentially expressed miRNAs (DEMs) in drug-resistant BC. Next, tumor-derived exosomes (TDEs) were isolated. Furthermore, it was determined whether the candidate drug-resistant miRNAs were also significant in TDEs, and then putative miRNAs in TDEs were validated in plasma samples from 35 patients with BC (20 patients with BC showing no response and 15 patients with BC showing a complete response). It was confirmed that the combination of five exosomal miRNAs, including miR-125b-5p, miR-146a-5p, miR-484, miR-1246-5p and miR-1260b, was effective for predicting therapeutic response to neoadjuvant chemotherapy, with an area under the curve value of 0.95, sensitivity of 75%, and specificity of 95%. Public datasets were analyzed to identify differentially expressed genes (DEGs) related to drug resistance and it was revealed that BAK1, NOVA1, PTGER4, RTKN2, AGO1, CAP1, and ETS1 were the target genes of exosomal miRNAs. Networks between DEMs and DEGs were highly correlated with mitosis, metabolism, drug transport, and immune responses. Consequently, these targets could be used as predictive markers and therapeutic targets for clinical applications to enhance treatment outcomes for patients with BC.

6.
Yonsei Med J ; 65(3): 163-173, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38373836

ABSTRACT

PURPOSE: To assess the added value of radiomics models from preoperative chest CT in predicting the presence of spread through air spaces (STAS) in the early stage of surgically resected lung adenocarcinomas using multiple validation datasets. MATERIALS AND METHODS: This retrospective study included 550 early-stage surgically resected lung adenocarcinomas in 521 patients, classified into training, test, internal validation, and temporal validation sets (n=211, 90, 91, and 158, respectively). Radiomics features were extracted from the segmented tumors on preoperative chest CT, and a radiomics score (Rad-score) was calculated to predict the presence of STAS. Diagnostic performance of the conventional model and the combined model, based on a combination of conventional and radiomics features, for the diagnosis of the presence of STAS were compared using the area under the curve (AUC) of the receiver operating characteristic curve. RESULTS: Rad-score was significantly higher in the STAS-positive group compared to the STAS-negative group in the training, test, internal, and temporal validation sets. The performance of the combined model was significantly higher than that of the conventional model in the training set {AUC: 0.784 [95% confidence interval (CI): 0.722-0.846] vs. AUC: 0.815 (95% CI: 0.759-0.872), p=0.042}. In the temporal validation set, the combined model showed a significantly higher AUC than that of the conventional model (p=0.001). The combined model showed a higher AUC than the conventional model in the test and internal validation sets, albeit with no statistical significance. CONCLUSION: A quantitative CT radiomics model can assist in the non-invasive prediction of the presence of STAS in the early stage of lung adenocarcinomas.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Retrospective Studies , Radiomics , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/surgery , Adenocarcinoma of Lung/pathology , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/surgery , Tomography, X-Ray Computed/methods
7.
BMC Cancer ; 24(1): 185, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326737

ABSTRACT

BACKGROUND: Predicting tumor responses to neoadjuvant chemotherapy (NAC) is critical for evaluating prognosis and designing treatment strategies for patients with breast cancer; however, there are no reliable biomarkers that can effectively assess tumor responses. Therefore, we aimed to evaluate the clinical feasibility of using extracellular vesicles (EVs) to predict tumor response after NAC. METHODS: Drug-resistant triple-negative breast cancer (TNBC) cell lines were successfully established, which developed specific morphologies and rapidly growing features. To detect resistance to chemotherapeutic drugs, EVs were isolated from cultured cells and plasma samples collected post-NAC from 36 patients with breast cancer. RESULTS: Among the differentially expressed gene profiles between parental and drug-resistant cell lines, drug efflux transporters such as MDR1, MRP1, and BCRP were highly expressed in resistant cell lines. Drug efflux transporters have been identified not only in cell lines but also in EVs released from parental cells using immunoaffinity-based EV isolation. The expression of drug resistance markers in EVs was relatively high in patients with residual disease compared to those with a pathological complete response. CONCLUSIONS: The optimal combination of drug-resistant EV markers was significantly efficient in predicting resistance to NAC with 81.82% sensitivity and 92.86% specificity.


Subject(s)
Extracellular Vesicles , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Neoadjuvant Therapy , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Neoplasm Proteins/metabolism , Extracellular Vesicles/metabolism
8.
Healthcare (Basel) ; 12(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275536

ABSTRACT

Evidence regarding Korean medicine treatment (KMT) for neuropathic pain is lacking. We aimed to identify the effects of integrative KMT in patients with postherpetic neuralgia (PHN). We retrospectively analyzed the electronic medical records of patients with PHN who received KMT at Kyung Hee University Korean Medicine Hospital between August 2021 and July 2022. We evaluated the effects of KMT-comprising acupuncture, pharmacopuncture, herbal medicine, cupping, and moxibustion-on pain intensity using the numerical rating scale (NRS), Short-Form McGill Pain Questionnaire (SF-MPQ), Hospital Anxiety and Depression Scale-Anxiety (HADS-A), Hospital Anxiety and Depression Scale-Depression (HADS-D), Daily Sleep Interference Scale (DSIS), Fatigue Severity Scale (FSS), and EuroQol-5D. Among 53 patients with PHN, 13 were included. The NRS score for worst pain over 1 week decreased from 6.54 ± 0.64 at baseline to 3.85 ± 0.63 at 8 weeks (41% reduction, p < 0.01), while that for average pain over 1 week decreased from 4.93 ± 0.67 at baseline to 3.08 ± 0.46 at 8 weeks (37% reduction, p < 0.01). From baseline to 8 weeks, there were significant reductions in the SF-MPQ, HADS-A, FSS, and EuroQol-5D scores. No adverse events were reported after KMT. Therefore, KMT may be an effective treatment option for patients with PHN.

9.
J Agric Food Chem ; 72(4): 2374-2380, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38247141

ABSTRACT

Fire blight is one of the most devastating plant diseases, causing severe social and economic problems. Herein, we report a novel method based on label-free surface-enhanced Raman scattering (SERS) combined with an Erwinia amylovora-specific bacteriophage that allows detecting efficiently fire blight bacteria E. amylovora for the first time. To achieve the highest SERS signals for E. amylovora, we synthesized and compared plasmonic nanoparticles (PNPs) with different sizes, i.e., bimetallic gold core-silver shell nanoparticles (Au@AgNPs) and monometallic gold nanoparticles (AuNPs) and utilized the coffee-ring effect for the self-assembly of PNPs and enrichment of fire blight bacteria. Furthermore, we investigated the changes in the SERS spectra of E. amylovora after incubation with an E. amylovora-specific bacteriophage, and we found considerable differences in the SERS signals as a function of the bacteriophage incubation time. The results indicate that our bacteriophage-based label-free SERS analysis can specifically detect E. amylovora without the need for peak assignment on the SERS spectra but simply by monitoring the changes in the SERS signals over time. Therefore, our facile method holds great potential for the label-free detection of pathogenic bacteria and the investigation of viral-bacterial interactions.


Subject(s)
Bacteriophages , Metal Nanoparticles , Gold , Spectrum Analysis, Raman/methods , Plant Diseases/microbiology
10.
Eur Radiol ; 34(2): 1222-1231, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37615762

ABSTRACT

OBJECTIVES: To evaluate a CT-based radiomics model for identifying malignant pancreatic intraductal papillary mucinous neoplasms (IPMNs) and compare its performance with the 2017 international consensus guidelines (ICGs). MATERIALS AND METHODS: We retrospectively included 194 consecutive patients who underwent surgical resection of pancreatic IPMNs between January 2008 and December 2020. Surgical histopathology was the reference standard for diagnosing malignancy. Using radiomics features from preoperative contrast-enhanced CT, a radiomics model was built with the least absolute shrinkage and selection operator by a five-fold cross-validation. CT and MR images were independently reviewed based on the 2017 ICGs by two abdominal radiologists, and the performances of the 2017 ICGs and radiomics model were compared. The areas under the curve (AUCs) were compared using the DeLong method. RESULTS: A total of 194 patients with pancreatic IPMNs (benign, 83 [43%]; malignant, 111 [57%]) were chronologically divided into training (n = 141; age, 65 ± 8.6 years; 88 males) and validation sets (n = 53; age, 66 ± 9.7 years; 31 males). There was no statistically significant difference in the diagnostic performance of the 2017 ICGs between CT and MRI (AUC, 0.71 vs. 0.71; p = 0.93) with excellent intermodality agreement (k = 0.86). In the validation set, the CT radiomics model had higher AUC (0.85 vs. 0.71; p = 0.038), specificity (84.6% vs. 61.5%; p = 0.041), and positive predictive value (84.0% vs. 66.7%; p = 0.044) than the 2017 ICGs. CONCLUSION: The CT radiomics model exhibited better diagnostic performance than the 2017 ICGs in classifying malignant IPMNs. CLINICAL RELEVANCE STATEMENT: Compared with the radiologists' evaluation based on the 2017 international consensus guidelines, the CT radiomics model exhibited better diagnostic performance in classifying malignant intraductal papillary mucinous neoplasms. KEY POINTS: • There is a paucity of comparisons between the 2017 international consensus guidelines (ICGs) and radiomics models for malignant intraductal papillary mucinous neoplasms (IPMNs). • The CT radiomics model developed in this study exhibited better diagnostic performance than the 2017 ICGs in classifying malignant IPMNs. • The radiomics model may serve as a valuable complementary tool to the 2017 ICGs, potentially allowing a more quantitative assessment of IPMNs.


Subject(s)
Carcinoma, Pancreatic Ductal , Neoplasms, Cystic, Mucinous, and Serous , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Humans , Male , Middle Aged , Aged , Radiomics , Retrospective Studies , Carcinoma, Pancreatic Ductal/diagnosis , Pancreatic Neoplasms/diagnosis
11.
Healthcare (Basel) ; 11(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38132033

ABSTRACT

Evidence-based treatment for Bell's palsy includes the administration of steroids within 3 days of symptom onset. Additionally, a few studies have suggested the importance of combining early acupuncture treatment in the acute phase of Bell's palsy with steroids. This study aimed to observe the impact of early acupuncture for Bell's palsy using real-world health insurance data in Korea. This retrospective study extracted data from 45,986 adult patients with Bell's palsy who received steroids between 2015 and 2017 with a follow-up period of at least 3 years until 2020 from the Korea National Health Insurance database. They were divided into the early acupuncture group (n = 28,267) and the comparison group (n = 17,719) based on the presence of an acupuncture treatment code within 7 days of diagnosis. The impact of early acupuncture on the likelihood of Bell's palsy recurrence was evaluated using multivariate logistic regression. The patients in the early acupuncture group had a lower likelihood of recurrence (odds ratio: 0.81, 95% confidence interval: 0.69-0.95). This study observed a beneficial impact of early acupuncture on Bell's palsy using real-world health insurance data in Korea. Further research is required to confirm these findings.

12.
Eur Radiol ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37840100

ABSTRACT

OBJECTIVES: To assess the feasibility of the UTE-MRI radiomic model in predicting the micropapillary and/or solid (MP/S) patterns of surgically resected lung adenocarcinoma. MATERIALS AND METHODS: We prospectively enrolled 74 lesions from 71 patients who underwent UTE-MRI and CT before curative surgery for early lung adenocarcinoma. For conventional radiologic analysis, we analyzed the longest lesion diameter and lesion characteristics at both UTE-MRI and CT. Radiomic features were extracted from the volume of interest of the lesions and Rad-scores were generated using the least absolute shrinkage and selection operator with fivefold cross-validation. Six models were constructed by combining the conventional radiologic model, UTE-MRI Rad-score, and CT Rad-score. The areas under the curves (AUCs) of each model were compared using the DeLong method. Early recurrence after curative surgery was analyzed, and Kaplan-Meier survival analysis was performed. RESULTS: Twenty-four lesions were MP/S-positive, and 50 were MP/S-negative. The longitudinal size showed a small systematic difference between UTE-MRI and CT, with fair intermodality agreement of lesion characteristic (kappa = 0.535). The Rad-scores of the UTE-MRI and CT demonstrated AUCs of 0.84 and 0.841, respectively (p = 0.98). Among the six models, mixed conventional, UTE-MRI, and CT Rad-score model showed the highest diagnostic performance (AUC = 0.879). In the survival analysis, the high- and low-risk groups were successfully divided by the Rad-score in UTE-MRI (p = 0.01) and CT (p < 0.01). CONCLUSION: UTE-MRI radiomic model predicting MP/S positivity is feasible compared with the CT radiomic model. Also, it was associated with early recurrence in the survival analysis. CLINICAL RELEVANCE STATEMENT: A radiomic model utilizing UTE-MRI, which does not present a radiation hazard, was able to successfully predict the histopathologic subtype of lung adenocarcinoma, and it was associated with the patient's recurrence-free survival. KEY POINTS: • No studies have reported the ultrashort echo time (UTE)-MRI-based radiomic model for lung adenocarcinoma. • The UTE-MRI Rad-score showed comparable diagnostic performance with CT Rad-score for predicting micropapillary and/or solid histopathologic pattern. • UTE-MRI is feasible not only for conventional radiologic analysis, but also for radiomics analysis.

13.
Nanomaterials (Basel) ; 13(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37836336

ABSTRACT

Porous carbon materials are suitable as highly efficient adsorbents for the treatment of organic pollutants in wastewater. In this study, we developed multiscale porous and heteroatom (O, N)-doped activated carbon aerogels (CAs) based on mesoporous zeolitic imidazolate framework-8 (ZIF-8) nanocrystals and wood using 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation, in situ synthesis, and carbonization/activation. The surface carboxyl groups in a TEMPO-oxidized wood (TW) can provide considerably large nucleation sites for ZIF-8. Consequently, ZIF-8, with excellent porosity, was successfully loaded into the TW via in situ growth to enhance the specific surface area and enable heteroatom doping. Thereafter, the ZIF-8-loaded TW was subjected to a direct carbonization/activation process, and the obtained activated CA, denoted as ZIF-8/TW-CA, exhibited a highly interconnected porous structure containing multiscale (micro, meso, and macro) pores. Additionally, the resultant ZIF-8/TW-CA exhibited a low density, high specific surface area, and excellent organic dye adsorption capacity of 56.0 mg cm-3, 785.8 m2 g-1, and 169.4 mg g-1, respectively. Given its sustainable, scalable, and low-cost wood platform, the proposed high-performance CA is expected to enable the substantial expansion of strategies for environmental protection, energy storage, and catalysis.

14.
Medicine (Baltimore) ; 102(22): e33893, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37266604

ABSTRACT

BACKGROUND: The range-of motion (ROM) is an essential component of joint mobility. Shoulder ROM measurement has been problematic due to its complexity. A marker less motion capture system can be a potential alternative for upper limb assessment. Currently, there is no systematic review to evaluate the validity of a marker less motion capture system for assessing shoulder ROM. This study aims to describe methods to evaluate the reliability and validity of a single camera marker less motion capture system that uses an RGB-depth sensor to measure shoulder ROM. METHODS: Studies that measured shoulder ROM with a single camera marker less motion capture system using the RGB-depth sensor and assessed the intra- and/or inter-rater reliability, and/or validity of the device will be included. The search of electronic databases, such as MEDLINE, EMBASE, Cochran library, Cumulative Index to Nursing, and Allied Health Literature via EBSCO, IEEE Xplore, China National Knowledge Infrastructure, KoreaMed, Korean studies Information Service System, and Research Information Sharing Services will be performed for all relevant articles from inception to December 2022. Two authors will independently perform quality assessments using the Consensus-based Standards for the selection of health Measurement Instruments checklist for reliability, measurement error of outcome measurement instrument, and criterion validity. The primary outcomes will be the intra- and inter-rater reliability and validity of the markerless motion capture system measuring shoulder flexion, extension, abduction, adduction, internal rotation, or external rotation. A subgroup analysis would be performed if there are sufficient data to pool to identify an influencing factor in the measurement of ROM using a marker less motion capture system. RESULTS AND CONCLUSION: These findings will present tools to utilize and evaluate single camera motion capture systems for the medical use for clinicians and healthcare experts and can aid in further clinical research using such a system for different movements and other joints.


Subject(s)
Motion Capture , Shoulder , Humans , Reproducibility of Results , Systematic Reviews as Topic , Meta-Analysis as Topic , Range of Motion, Articular
15.
Exp Neurobiol ; 32(2): 110-118, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37164651

ABSTRACT

Complex regional pain syndrome (CRPS) is a chronic neuropathic pain disorder. Pain catastrophizing, characterized by magnification, rumination, and helplessness, increases perceived pain intensity and mental distress in CRPS patients. As functional connectivity patterns in CRPS remain largely unknown, we aimed to investigate functional connectivity alterations in CRPS patients and their association with pain catastrophizing using a whole-brain analysis approach. Twenty-one patients with CRPS and 49 healthy controls were included in the study for clinical assessment and resting-state functional magnetic resonance imaging. Between-group differences in whole-brain functional connectivity were examined through a Network-based Statistics analysis. Associations between altered functional connectivity and the extent of pain catastrophizing were also assessed in CRPS patients. Relative to healthy controls, CRPS patients showed higher levels of functional connectivity in the bilateral somatosensory subnetworks (components 1~2), but lower functional connectivity within the prefronto-posterior cingulate (component 3), prefrontal (component 4), prefronto-parietal (component 5), and thalamo-anterior cingulate (component 6) subnetworks (p<0.05, family-wise error corrected). Higher levels of functional connectivity in components 1~2 (ß=0.45, p=0.04) and lower levels of functional connectivity in components 3~6 (ß=-0.49, p=0.047) were significantly correlated with higher levels of pain catastrophizing in CRPS patients. Higher functional connectivity in the somatosensory subnetworks implicating exaggerated pain perception and lower functional connectivity in the prefronto-parieto-cingulo-thalamic subnetworks indicating impaired cognitive-affective pain processing may underlie pain catastrophizing in CRPS.

16.
Proc Natl Acad Sci U S A ; 120(21): e2217826120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37192160

ABSTRACT

Molecular classification of gastric cancer (GC) identified a subgroup of patients showing chemoresistance and poor prognosis, termed SEM (Stem-like/Epithelial-to-mesenchymal transition/Mesenchymal) type in this study. Here, we show that SEM-type GC exhibits a distinct metabolic profile characterized by high glutaminase (GLS) levels. Unexpectedly, SEM-type GC cells are resistant to glutaminolysis inhibition. We show that under glutamine starvation, SEM-type GC cells up-regulate the 3 phosphoglycerate dehydrogenase (PHGDH)-mediated mitochondrial folate cycle pathway to produce NADPH as a reactive oxygen species scavenger for survival. This metabolic plasticity is associated with globally open chromatin structure in SEM-type GC cells, with ATF4/CEBPB identified as transcriptional drivers of the PHGDH-driven salvage pathway. Single-nucleus transcriptome analysis of patient-derived SEM-type GC organoids revealed intratumoral heterogeneity, with stemness-high subpopulations displaying high GLS expression, a resistance to GLS inhibition, and ATF4/CEBPB activation. Notably, coinhibition of GLS and PHGDH successfully eliminated stemness-high cancer cells. Together, these results provide insight into the metabolic plasticity of aggressive GC cells and suggest a treatment strategy for chemoresistant GC patients.


Subject(s)
Phosphoglycerate Dehydrogenase , Stomach Neoplasms , Humans , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Cell Line, Tumor , Glutamine/metabolism , Nutrients
17.
Neuroimage Clin ; 38: 103440, 2023.
Article in English | MEDLINE | ID: mdl-37224606

ABSTRACT

BACKGROUND: Complex regional pain syndrome (CRPS) is characterized by continued amplification of pain intensity. Given the pivotal roles of the insula in the perception and interpretation of pain, we examined insular functional connectivity and its associations with clinical characteristics in patients with CRPS. METHODS: Twenty-one patients with CRPS and 49 healthy controls underwent resting-state functional magnetic resonance imaging. The seed-to-seed functional connectivity analysis was performed for the bilateral insulae and cognitive control regions including the dorsal anterior cingulate cortex (dACC) and bilateral dorsolateral prefrontal cortex (DLPFC) between the two groups. Correlations between altered functional connectivity and clinical characteristics were assessed in CRPS patients. RESULTS: CRPS patients exhibited lower functional connectivity within the bilateral anterior insulae, between the insular and cognitive control regions (the bilateral anterior/posterior insulae-dACC; the right posterior insula-left DLPFC), as compared with healthy controls at false discovery rate-corrected p < 0.05. In CRPS patients, pain severity was associated negatively with the left-right anterior insular functional connectivity (r = -0.49, p = 0.03), yet positively with the left anterior insula-dACC functional connectivity (r = 0.51, p = 0.02). CONCLUSIONS: CRPS patients showed lower functional connectivity both within the bilateral anterior insulae and between the insular and cognitive control regions. The current findings may suggest pivotal roles of the insula in dysfunctional pain processing of CRPS patients.


Subject(s)
Complex Regional Pain Syndromes , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Complex Regional Pain Syndromes/diagnostic imaging , Complex Regional Pain Syndromes/pathology , Pain , Gyrus Cinguli/diagnostic imaging , Pain Measurement , Cerebral Cortex
18.
Nat Commun ; 14(1): 2243, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076490

ABSTRACT

Translational modulation based on RNA-binding proteins can be used to construct artificial gene circuits, but RNA-binding proteins capable of regulating translation efficiently and orthogonally remain scarce. Here we report CARTRIDGE (Cas-Responsive Translational Regulation Integratable into Diverse Gene control) to repurpose Cas proteins as translational modulators in mammalian cells. We demonstrate that a set of Cas proteins efficiently and orthogonally repress or activate the translation of designed mRNAs that contain a Cas-binding RNA motif in the 5'-UTR. By linking multiple Cas-mediated translational modulators, we designed and built artificial circuits like logic gates, cascades, and half-subtractor circuits. Moreover, we show that various CRISPR-related technologies like anti-CRISPR and split-Cas9 platforms could be similarly repurposed to control translation. Coupling Cas-mediated translational and transcriptional regulation enhanced the complexity of synthetic circuits built by only introducing a few additional elements. Collectively, CARTRIDGE has enormous potential as a versatile molecular toolkit for mammalian synthetic biology.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Animals , CRISPR-Cas Systems/genetics , CRISPR-Associated Proteins/genetics , Gene Expression Regulation , Gene Regulatory Networks , RNA, Messenger , Mammals/genetics
19.
Polymers (Basel) ; 15(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37112048

ABSTRACT

With the increasing importance of environmental protection, high-performance biopolymer films have received considerable attention as effective alternatives to petroleum-based polymer films. In this study, we developed hydrophobic regenerated cellulose (RC) films with good barrier properties through a simple gas-solid reaction via the chemical vapor deposition of alkyltrichlorosilane. RC films were employed to construct a biodegradable, free-standing substrate matrix, and methyltrichlorosilane (MTS) was used as a hydrophobic coating material to control the wettability and improve the barrier properties of the final films. MTS readily coupled with hydroxyl groups on the RC surface through a condensation reaction. We demonstrated that the MTS-modified RC (MTS/RC) films were optically transparent, mechanically strong, and hydrophobic. In particular, the obtained MTS/RC films exhibited a low oxygen transmission rate of 3 cm3/m2 per day and a low water vapor transmission rate of 41 g/m2 per day, which are superior to those of other hydrophobic biopolymer films.

20.
PLoS One ; 18(4): e0279349, 2023.
Article in English | MEDLINE | ID: mdl-37043456

ABSTRACT

BACKGROUND: Accurate interpretation of chest radiographs requires years of medical training, and many countries face a shortage of medical professionals to meet such requirements. Recent advancements in artificial intelligence (AI) have aided diagnoses; however, their performance is often limited due to data imbalance. The aim of this study was to augment imbalanced medical data using generative adversarial networks (GANs) and evaluate the clinical quality of the generated images via a multi-center visual Turing test. METHODS: Using six chest radiograph datasets, (MIMIC, CheXPert, CXR8, JSRT, VBD, and OpenI), starGAN v2 generated chest radiographs with specific pathologies. Five board-certified radiologists from three university hospitals, each with at least five years of clinical experience, evaluated the image quality through a visual Turing test. Further evaluations were performed to investigate whether GAN augmentation enhanced the convolutional neural network (CNN) classifier performances. RESULTS: In terms of identifying GAN images as artificial, there was no significant difference in the sensitivity between radiologists and random guessing (result of radiologists: 147/275 (53.5%) vs result of random guessing: 137.5/275, (50%); p = .284). GAN augmentation enhanced CNN classifier performance by 11.7%. CONCLUSION: Radiologists effectively classified chest pathologies with synthesized radiographs, suggesting that the images contained adequate clinical information. Furthermore, GAN augmentation enhanced CNN performance, providing a bypass to overcome data imbalance in medical AI training. CNN based methods rely on the amount and quality of training data; the present study showed that GAN augmentation could effectively augment training data for medical AI.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Humans , Certification , Hospitals, University , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...