Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Clin Invest ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652564

ABSTRACT

BACKGROUND: Early antiretroviral therapy initiation (ARTi) in HIV-1 restricts reservoir size and diversity while preserving immune function, potentially improving opportunities for immunotherapeutic cure strategies. For antibody-based cure approaches, the development of autologous neutralizing antibodies (anAb) after acute/early ARTi is relevant, but poorly understood. METHODS: We characterize antibody responses in a cohort of 23 participants following ARTi in acute HIV (<60 days after infection) and early HIV (60-128 days after infection). RESULTS: Plasma virus sequences at the time of ARTi revealed evidence of escape from anAbs after early, but not acute, ARTi. HIV-1 Envs representing the transmitted/founder virus(es) (acute ARTi) or escape variants (early ARTi) were tested for sensitivity to longitudinal plasma IgG. After acute ARTi, no anAb responses developed over months to years of suppressive ART. In two of the three acute ARTi participants who experienced viremia after ARTi, however, anAbs arose shortly thereafter. After early ARTi, anAbs targeting those early variants developed between 12 and 42 weeks of ART and continued to increase in breadth and potency thereafter. CONCLUSIONS: Results indicate a threshold of virus replication (~60 days) required to induce anAbs, after which they continue to expand on suppressive ART to better target the range of reservoir variants. TRIAL REGISTRATION: NCT02656511FUNDING. National Institutes of Health grants U01AI169767; R01AI162646; UM1AI164570; UM1AI164560; U19AI096109; K23GM112526; T32AI118684, P30-AI-045008, P30 AI027763, R24 AI067039. Gilead Sciences grant INUS2361354; Viiv healthcare grant A126326.

2.
medRxiv ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38585951

ABSTRACT

Antiretroviral therapy (ART) is not a cure. Upon ART cessation, virus rapidly rebounds from latently-infected cells ("the HIV reservoir"). The reservoir is largely stabilized at the time of ART initiation and then decays slowly. Here, leveraging >500 longitudinal samples from 67 people with HIV (PWH) treated during acute infection, we developed a novel mathematical model to predict reservoir decay using the intact proviral DNA assay (IPDA) from peripheral CD4+ T cells. Nonlinear generalized additive models adjusted for initial CD4+ T count, pre-ART viral load, and timing of ART initiation demonstrated rapid biphasic decay of intact DNA (week 0-5: t1/2 ~0.71 months; week 5-24: t1/2 ~3.9 months) that extended out to 1 year of ART, with similar trends for defective DNA. Predicted reservoir decay were faster for participants individuals with earlier timing of ART initiation, higher initial CD4+ T cell count, and lower pre-ART viral load. These estimates are ~5-fold faster than prior reservoir decay estimates among chronic-treated PWH. Thus, these data add to our limited understanding of host viral control at the earliest stages of HIV reservoir stabilization, potentially informing future HIV cure efforts aimed at diverse, global population of PWH initiating ART at varying stages of disease.

3.
Nat Immunol ; 25(2): 218-225, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212464

ABSTRACT

Long COVID (LC) occurs after at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, yet its etiology remains poorly understood. We used 'omic" assays and serology to deeply characterize the global and SARS-CoV-2-specific immunity in the blood of individuals with clear LC and non-LC clinical trajectories, 8 months postinfection. We found that LC individuals exhibited systemic inflammation and immune dysregulation. This was evidenced by global differences in T cell subset distribution implying ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. LC individuals displayed increased frequencies of CD4+ T cells poised to migrate to inflamed tissues and exhausted SARS-CoV-2-specific CD8+ T cells, higher levels of SARS-CoV-2 antibodies and a mis-coordination between their SARS-CoV-2-specific T and B cell responses. Our analysis suggested an improper crosstalk between the cellular and humoral adaptive immunity in LC, which can lead to immune dysregulation, inflammation and clinical symptoms associated with this debilitating condition.


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Male , Humans , Post-Acute COVID-19 Syndrome , CD8-Positive T-Lymphocytes , Immunity, Humoral , Antibodies, Viral , Inflammation
4.
PLoS Pathog ; 19(11): e1011114, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38019897

ABSTRACT

The major barrier to an HIV cure is the HIV reservoir: latently-infected cells that persist despite effective antiretroviral therapy (ART). There have been few cohort-based studies evaluating host genomic or transcriptomic predictors of the HIV reservoir. We performed host RNA sequencing and HIV reservoir quantification (total DNA [tDNA], unspliced RNA [usRNA], intact DNA) from peripheral CD4+ T cells from 191 ART-suppressed people with HIV (PWH). After adjusting for nadir CD4+ count, timing of ART initiation, and genetic ancestry, we identified two host genes for which higher expression was significantly associated with smaller total DNA viral reservoir size, P3H3 and NBL1, both known tumor suppressor genes. We then identified 17 host genes for which lower expression was associated with higher residual transcription (HIV usRNA). These included novel associations with membrane channel (KCNJ2, GJB2), inflammasome (IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9, CXCL3, CXCL10), and innate immunity (TLR7) genes (FDR-adjusted q<0.05). Gene set enrichment analyses further identified significant associations of HIV usRNA with TLR4/microbial translocation (q = 0.006), IL-1/NRLP3 inflammasome (q = 0.008), and IL-10 (q = 0.037) signaling. Protein validation assays using ELISA and multiplex cytokine assays supported these observed inverse host gene correlations, with P3H3, IL-10, and TNF-α protein associations achieving statistical significance (p<0.05). Plasma IL-10 was also significantly inversely associated with HIV DNA (p = 0.016). HIV intact DNA was not associated with differential host gene expression, although this may have been due to a large number of undetectable values in our study. To our knowledge, this is the largest host transcriptomic study of the HIV reservoir. Our findings suggest that host gene expression may vary in response to the transcriptionally active reservoir and that changes in cellular proliferation genes may influence the size of the HIV reservoir. These findings add important data to the limited host genetic HIV reservoir studies to date.


Subject(s)
HIV Infections , HIV-1 , Humans , Interleukin-10 , Inflammasomes , HIV-1/genetics , HIV Infections/drug therapy , HIV Infections/genetics , CD4-Positive T-Lymphocytes , Immunity, Innate/genetics , Genes, Tumor Suppressor , Gene Expression , DNA , Viral Load
5.
PLoS One ; 18(10): e0292068, 2023.
Article in English | MEDLINE | ID: mdl-37796845

ABSTRACT

BACKGROUND: The prevalence of substance use in people with HIV (PWH) in the United States is higher than in the general population and is an important driver of HIV-related outcomes. We sought to assess if previously identified genetic associations that contribute to substance use are also observed in a population of PWH. METHODS: We performed genome-wide association studies (GWAS) of alcohol, smoking, and cannabis use phenotypes in a multi-ancestry population of 7,542 PWH from the Center for AIDS Research Network of Integrated Clinical Systems (CNICS). We conducted multi-ancestry GWAS for individuals of African (n = 3,748), Admixed American (n = 1,334), and European (n = 2,460) ancestry. Phenotype data were self-reported and collected using patient reported outcomes (PROs) and three questions from AUDIT-C, an alcohol screening tool. We analyzed nine phenotypes: 1) frequency of alcohol consumption, 2) typical number of drinks on a day when drinking alcohol, 3) frequency of five or more alcoholic drinks in a 30-day period, 4) smoking initiation, 5) smoking cessation, 6) cigarettes per day, 7) cannabis use initiation, 8) cannabis use cessation, 9) frequency of cannabis use during the previous 30 days. For each phenotype we considered a) variants previously identified as associated with a substance use trait and b) novel associations. RESULTS: We observed evidence for effects of previously reported single nucleotide polymorphisms (SNPs) related to alcohol (rs1229984, p = 0.001), tobacco (rs11783093, p = 2.22E-4), and cannabis use (rs2875907, p = 0.005). We also report two novel loci (19p13.2, p = 1.3E-8; and 20p11.21, p = 2.1E-8) associated with cannabis use cessation. CONCLUSIONS: Our analyses contribute to understanding the genetic bases of substance use in a population with relatively higher rates of use compared to the general population.


Subject(s)
Cannabis , HIV Infections , Substance-Related Disorders , Humans , United States/epidemiology , Genome-Wide Association Study , Smoking/genetics , Smoking/epidemiology , Alcohol Drinking/genetics , Alcohol Drinking/epidemiology , Substance-Related Disorders/epidemiology , Substance-Related Disorders/genetics , Cannabis/genetics , Ethanol , HIV Infections/epidemiology , HIV Infections/genetics
6.
bioRxiv ; 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-36798286

ABSTRACT

Long COVID (LC), a type of post-acute sequelae of SARS-CoV-2 infection (PASC), occurs after at least 10% of SARS-CoV-2 infections, yet its etiology remains poorly understood. Here, we used multiple "omics" assays (CyTOF, RNAseq/scRNAseq, Olink) and serology to deeply characterize both global and SARS-CoV-2-specific immunity from blood of individuals with clear LC and non-LC clinical trajectories, 8 months following infection and prior to receipt of any SARS-CoV-2 vaccine. Our analysis focused on deep phenotyping of T cells, which play important roles in immunity against SARS-CoV-2 yet may also contribute to COVID-19 pathogenesis. Our findings demonstrate that individuals with LC exhibit systemic inflammation and immune dysregulation. This is evidenced by global differences in T cell subset distribution in ways that imply ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. Individuals with LC harbored increased frequencies of CD4+ T cells poised to migrate to inflamed tissues, and exhausted SARS-CoV-2-specific CD8+ T cells. They also harbored significantly higher levels of SARS-CoV-2 antibodies, and in contrast to non-LC individuals, exhibited a mis-coordination between their SARS-CoV-2-specific T and B cell responses. RNAseq/scRNAseq and Olink analyses similarly revealed immune dysregulatory mechanisms, along with non-immune associated perturbations, in individuals with LC. Collectively, our data suggest that proper crosstalk between the humoral and cellular arms of adaptive immunity has broken down in LC, and that this, perhaps in the context of persistent virus, leads to the immune dysregulation, inflammation, and clinical symptoms associated with this debilitating condition.

7.
bioRxiv ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36712077

ABSTRACT

The major barrier to an HIV cure is the persistence of infected cells that evade host immune surveillance despite effective antiretroviral therapy (ART). Most prior host genetic HIV studies have focused on identifying DNA polymorphisms (e.g., CCR5Δ32 , MHC class I alleles) associated with viral load among untreated "elite controllers" (~1% of HIV+ individuals who are able to control virus without ART). However, there have been few studies evaluating host genetic predictors of viral control for the majority of people living with HIV (PLWH) on ART. We performed host RNA sequencing and HIV reservoir quantification (total DNA, unspliced RNA, intact DNA) from peripheral CD4+ T cells from 191 HIV+ ART-suppressed non-controllers. Multivariate models included covariates for timing of ART initiation, nadir CD4+ count, age, sex, and ancestry. Lower HIV total DNA (an estimate of the total reservoir) was associated with upregulation of tumor suppressor genes NBL1 (q=0.012) and P3H3 (q=0.012). Higher HIV unspliced RNA (an estimate of residual HIV transcription) was associated with downregulation of several host genes involving inflammasome ( IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9 , CXCL3, CXCL10 ) and innate immune ( TLR7 ) signaling, as well as novel associations with potassium ( KCNJ2 ) and gap junction ( GJB2 ) channels, all q<0.05. Gene set enrichment analyses identified significant associations with TLR4/microbial translocation (q=0.006), IL-1ß/NRLP3 inflammasome (q=0.008), and IL-10 (q=0.037) signaling. HIV intact DNA (an estimate of the "replication-competent" reservoir) demonstrated trends with thrombin degradation ( PLGLB1 ) and glucose metabolism ( AGL ) genes, but data were (HIV intact DNA detected in only 42% of participants). Our findings demonstrate that among treated PLWH, that inflammation, innate immune responses, bacterial translocation, and tumor suppression/cell proliferation host signaling play a key role in the maintenance of the HIV reservoir during ART. Further data are needed to validate these findings, including functional genomic studies, and expanded epidemiologic studies in female, non-European cohorts. Author Summary: Although lifelong HIV antiretroviral therapy (ART) suppresses virus, the major barrier to an HIV cure is the persistence of infected cells that evade host immune surveillance despite effective ART, "the HIV reservoir." HIV eradication strategies have focused on eliminating residual virus to allow for HIV remission, but HIV cure trials to date have thus far failed to show a clinically meaningful reduction in the HIV reservoir. There is an urgent need for a better understanding of the host-viral dynamics during ART suppression to identify potential novel therapeutic targets for HIV cure. This is the first epidemiologic host gene expression study to demonstrate a significant link between HIV reservoir size and several well-known immunologic pathways (e.g., IL-1ß, TLR7, TNF-α signaling pathways), as well as novel associations with potassium and gap junction channels (Kir2.1, connexin 26). Further data are needed to validate these findings, including functional genomic studies and expanded epidemiologic studies in female, non-European cohorts.

8.
AIDS ; 37(3): 477-488, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36695358

ABSTRACT

OBJECTIVE: Prior genomewide association studies have identified variation in major histocompatibility complex (MHC) class I alleles and C-C chemokine receptor type 5 gene (CCR5Δ32) as genetic predictors of viral control, especially in 'elite' controllers, individuals who remain virally suppressed in the absence of therapy. DESIGN: Cross-sectional genomewide association study. METHODS: We analyzed custom whole exome sequencing and direct human leukocyte antigen (HLA) typing from 202 antiretroviral therapy (ART)-suppressed HIV+ noncontrollers in relation to four measures of the peripheral CD4+ T-cell reservoir: HIV intact DNA, total (t)DNA, unspliced (us)RNA, and RNA/DNA. Linear mixed models were adjusted for potential covariates including age, sex, nadir CD4+ T-cell count, pre-ART HIV RNA, timing of ART initiation, and duration of ART suppression. RESULTS: Previously reported 'protective' host genetic mutations related to viral setpoint (e.g. among elite controllers) were found to predict smaller HIV reservoir size. The HLA 'protective' B∗57:01 was associated with significantly lower HIV usRNA (q = 3.3 × 10-3), and among the largest subgroup, European ancestry individuals, the CCR5Δ32 deletion was associated with smaller HIV tDNA (P = 4.3 × 10-3) and usRNA (P = 8.7 × 10-3). In addition, genomewide analysis identified several single nucleotide polymorphisms in MX1 (an interferon stimulated gene) that were significantly associated with HIV tDNA (q = 0.02), and the direction of these associations paralleled MX1 gene eQTL expression. CONCLUSIONS: We observed a significant association between previously reported 'protective' MHC class I alleles and CCR5Δ32 with the HIV reservoir size in noncontrollers. We also found a novel association between MX1 and HIV total DNA (in addition to other interferon signaling relevant genes, PPP1CB, DDX3X). These findings warrant further investigation in future validation studies.


Subject(s)
HIV Infections , HIV-1 , Interferon Type I , Humans , HIV Infections/drug therapy , HIV Infections/genetics , Alleles , CD8-Positive T-Lymphocytes , Cross-Sectional Studies , HIV-1/genetics , Histocompatibility Antigens Class I/genetics , HLA Antigens , RNA , Major Histocompatibility Complex , Receptors, Chemokine/genetics , Interferon Type I/metabolism , Viral Load , Myxovirus Resistance Proteins
9.
J Immunol ; 208(7): 1790-1801, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35296537

ABSTRACT

T cells residing in mucosal tissues play important roles in homeostasis and defense against microbial pathogens. The gut and female reproductive tract (FRT) are both tolerogenic environments, but they differ in the kinds of foreign Ags they need to tolerate. How these different environments influence the properties of their T cells is poorly understood, but important for understanding women's health. We recruited antiretroviral therapy-suppressed women living with HIV who donated, within one visit, blood and tissue samples from the ileum, colon, rectosigmoid, endometrium, endocervix, and ectocervix. With these samples, we conducted 36-parameter cytometry by time of flight phenotyping of T cells. Although gut and FRT T cells shared features discriminating them from their blood counterparts, they also harbored features distinguishing them from one another. These included increased proportions of CD69+ T resident memory cells of the T effector memory phenotype, as well as preferential coexpression of CD69 and CD103, on the gut-derived cells. In contrast, CD69+CD103+ T resident memory CD8+ T cells from FRT, but not those from gut, preferentially expressed PD1. We further determined that a recently described population of CXCR4+ T inflammatory mucosal cells differentially expressed multiple other chemokine receptors relative to their blood counterparts. Our findings suggest that T cells resident in different tolerogenic mucosal sites take on distinct properties.


Subject(s)
CD8-Positive T-Lymphocytes , HIV Infections , Anti-Retroviral Agents/therapeutic use , Female , Genitalia , HIV Infections/drug therapy , Humans , Lymphocyte Count
10.
Front Immunol ; 13: 803417, 2022.
Article in English | MEDLINE | ID: mdl-35154118

ABSTRACT

T and natural killer (NK) cells are effector cells with key roles in anti-HIV immunity, including in lymphoid tissues, the major site of HIV persistence. However, little is known about the features of these effector cells from people living with HIV (PLWH), particularly from those who initiated antiretroviral therapy (ART) during acute infection. Our study design was to use 42-parameter CyTOF to conduct deep phenotyping of paired blood- and lymph node (LN)-derived T and NK cells from three groups of HIV+ aviremic individuals: elite controllers (N = 5), and ART-suppressed individuals who had started therapy during chronic (N = 6) vs. acute infection (N = 8), the latter of which is associated with better outcomes. We found that acute-treated individuals are enriched for specific subsets of T and NK cells, including blood-derived CD56-CD16+ NK cells previously associated with HIV control, and LN-derived CD4+ T follicular helper cells with heightened expansion potential. An in-depth comparison of the features of the cells from blood vs. LNs of individuals from our cohort revealed that T cells from blood were more activated than those from LNs. By contrast, LNs were enriched for follicle-homing CXCR5+ CD8+ T cells, which expressed increased levels of inhibitory receptors and markers of survival and proliferation as compared to their CXCR5- counterparts. In addition, a subset of memory-like CD56brightTCF1+ NK cells was enriched in LNs relative to blood. These results together suggest unique T and NK cell features in acute-treated individuals, and highlight the importance of examining effector cells not only in blood but also the lymphoid tissue compartment, where the reservoir mostly persists, and where these cells take on distinct phenotypic features.


Subject(s)
HIV Infections/immunology , Leukocytes/classification , Lymphocytes/immunology , Phenotype , Sustained Virologic Response , Adult , Aged , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Female , HIV Infections/drug therapy , HIV-1/immunology , Humans , Killer Cells, Natural/immunology , Leukocytes/immunology , Lymphocytes/classification , Male , Middle Aged
11.
Elife ; 102021 10 12.
Article in English | MEDLINE | ID: mdl-34636722

ABSTRACT

While mRNA vaccines are proving highly efficacious against SARS-CoV-2, it is important to determine how booster doses and prior infection influence the immune defense they elicit, and whether they protect against variants. Focusing on the T cell response, we conducted a longitudinal study of infection-naïve and COVID-19 convalescent donors before vaccination and after their first and second vaccine doses, using a high-parameter CyTOF analysis to phenotype their SARS-CoV-2-specific T cells. Vaccine-elicited spike-specific T cells responded similarly to stimulation by spike epitopes from the ancestral, B.1.1.7 and B.1.351 variant strains, both in terms of cell numbers and phenotypes. In infection-naïve individuals, the second dose boosted the quantity and altered the phenotypic properties of SARS-CoV-2-specific T cells, while in convalescents the second dose changed neither. Spike-specific T cells from convalescent vaccinees differed strikingly from those of infection-naïve vaccinees, with phenotypic features suggesting superior long-term persistence and ability to home to the respiratory tract including the nasopharynx. These results provide reassurance that vaccine-elicited T cells respond robustly to emerging viral variants, confirm that convalescents may not need a second vaccine dose, and suggest that vaccinated convalescents may have more persistent nasopharynx-homing SARS-CoV-2-specific T cells compared to their infection-naïve counterparts.


Vaccination is one of the best ways to prevent severe COVID-19. Two doses of mRNA vaccine protect against serious illness caused by the coronavirus SARS-CoV-2. They do this, in part, by encouraging the immune system to make specialised proteins known as antibodies that recognise the virus. Most of the vaccine research so far has focussed on these antibodies, but they are only one part of the immune response. Vaccines also activate immune cells called T cells. These cells have two main roles, coordinating the immune response and killing cells infected with viruses. It is likely that they play a key role in preventing severe COVID-19. There are many kinds of T cells, each with a different role. Currently, the identity and characteristics of the T cells that protect against COVID-19 is unclear. Different types of T cells have unique proteins on their surface. Examining these proteins can reveal details about how the T cells work, which part of the virus they recognise, and which part of the body they protect. A tool called cytometry by time of flight allows researchers to measure these proteins, one cell at a time. Using this technique, Neidleman, Luo et al. investigated T cells from 11 people before vaccination and after their first and second doses. Five people had never had COVID-19 before, and six had already recovered from COVID-19. Neidleman, Luo et al. found that the T cells recognizing SARS-CoV-2 in the two groups differed. In people who had never had COVID-19 before, the second dose of vaccine improved the quality and quantity of the T cells. The same was not true for people who had already recovered from COVID-19. However, although their T cells did not improve further after a second vaccine dose, they did show signs that they might offer more protection overall. The proteins on the cells suggest that they might last longer, and that they might specifically protect the nose, throat and lungs. Neidleman, Luo et al. also found that, for both groups, T cells activated by vaccination responded in the same way to different variants of the virus. This work highlights the importance of getting both vaccine doses for people who have never had COVID-19. It also suggests that vaccination in people who have had COVID-19 may generate better T cells. Larger studies could show whether these patterns remain true across the wider population. If so, it is possible that delivering vaccines to the nose or throat could boost immunity by mimicking natural infection. This might encourage T cells to make the surface proteins that allow them to home to these areas.


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/drug effects , Vaccines, Synthetic/pharmacology , Adult , Aged , COVID-19/prevention & control , COVID-19/virology , Female , Humans , Immunization, Secondary , Longitudinal Studies , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult , mRNA Vaccines
12.
J Immunol ; 207(5): 1344-1356, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34389625

ABSTRACT

CD8+ T cells can potentiate long-lived immunity against COVID-19. We screened longitudinally-sampled convalescent human donors against SARS-CoV-2 tetramers and identified a participant with an immunodominant response against residues 322 to 311 of nucleocapsid (Nuc322-331), a peptide conserved in all variants of concern reported to date. We conducted 38-parameter cytometry by time of flight on tetramer-identified Nuc322-331-specific CD8+ T cells and on CD4+ and CD8+ T cells recognizing the entire nucleocapsid and spike proteins, and took 32 serological measurements. We discovered a coordination of the Nuc322-331-specific CD8+ T response with both the CD4+ T cell and Ab pillars of adaptive immunity. Over the approximately six month period of convalescence monitored, we observed a slow and progressive decrease in the activation state and polyfunctionality of Nuc322-331-specific CD8+ T cells, accompanied by an increase in their lymph node-homing and homeostatic proliferation potential. These results suggest that following a typical case of mild COVID-19, SARS-CoV-2-specific CD8+ T cells not only persist but continuously differentiate in a coordinated fashion well into convalescence into a state characteristic of long-lived, self-renewing memory.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Convalescence , SARS-CoV-2/immunology , CD8-Positive T-Lymphocytes/pathology , Humans , Longitudinal Studies
13.
Cell Rep ; 36(3): 109414, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34260965

ABSTRACT

Although T cells are likely players in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity, little is known about the phenotypic features of SARS-CoV-2-specific T cells associated with recovery from severe coronavirus disease 2019 (COVID-19). We analyze T cells from 34 individuals with COVID-19 with severity ranging from mild (outpatient) to critical, culminating in death. Relative to individuals who succumbed, individuals who recovered from severe COVID-19 harbor elevated and increasing numbers of SARS-CoV-2-specific T cells capable of homeostatic proliferation. In contrast, fatal COVID-19 cases display elevated numbers of SARS-CoV-2-specific regulatory T cells and a time-dependent escalation in activated bystander CXCR4+ T cells, as assessed by longitudinal sampling. Together with the demonstration of increased proportions of inflammatory CXCR4+ T cells in the lungs of individuals with severe COVID-19, these results support a model where lung-homing T cells activated through bystander effects contribute to immunopathology, whereas a robust, non-suppressive SARS-CoV-2-specific T cell response limits pathogenesis and promotes recovery from severe COVID-19.

14.
bioRxiv ; 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34013277

ABSTRACT

While mRNA vaccines are proving highly efficacious against SARS-CoV-2, it is important to determine how booster doses and prior infection influence the immune defense they elicit, and whether they protect against variants. Focusing on the T cell response, we conducted a longitudinal study of infection-naïve and COVID-19 convalescent donors before vaccination and after their first and second vaccine doses, using a high-parameter CyTOF analysis to phenotype their SARS-CoV-2-specific T cells. Vaccine-elicited spike-specific T cells responded similarly to stimulation by spike epitopes from the ancestral, B.1.1.7 and B.1.351 variant strains, both in terms of cell numbers and phenotypes. In infection-naïve individuals, the second dose boosted the quantity and altered the phenotypic properties of SARS-CoV-2-specific T cells, while in convalescents the second dose changed neither. Spike-specific T cells from convalescent vaccinees differed strikingly from those of infection-naïve vaccinees, with phenotypic features suggesting superior long-term persistence and ability to home to the respiratory tract including the nasopharynx. These results provide reassurance that vaccine-elicited T cells respond robustly to emerging viral variants, confirm that convalescents may not need a second vaccine dose, and suggest that vaccinated convalescents may have more persistent nasopharynx-homing SARS-CoV-2-specific T cells compared to their infection-naïve counterparts.

15.
BMC Biol ; 19(1): 10, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33472616

ABSTRACT

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) provides high-dimensional measurements of transcript counts in individual cells. However, high assay costs and artifacts associated with analyzing samples across multiple sequencing runs limit the study of large numbers of samples. Sample multiplexing technologies such as MULTI-seq and antibody hashing using single-cell multiplexing kit (SCMK) reagents (BD Biosciences) use sample-specific sequence tags to enable individual samples to be sequenced in a pooled format, markedly lowering per-sample processing and sequencing costs while minimizing technical artifacts. Critically, however, pooling samples could introduce new artifacts, partially negating the benefits of sample multiplexing. In particular, no study to date has evaluated whether pooling peripheral blood mononuclear cells (PBMCs) from unrelated donors under standard scRNA-seq sample preparation conditions (e.g., 30 min co-incubation at 4 °C) results in significant changes in gene expression resulting from alloreactivity (i.e., response to non-self). The ability to demonstrate minimal to no alloreactivity is crucial to avoid confounded data analyses, particularly for cross-sectional studies evaluating changes in immunologic gene signatures. RESULTS: Here, we applied the 10x Genomics scRNA-seq platform to MULTI-seq and/or SCMK-labeled PBMCs from a single donor with and without pooling with PBMCs from unrelated donors for 30 min at 4 °C. We did not detect any alloreactivity signal between mixed and unmixed PBMCs across a variety of metrics, including alloreactivity marker gene expression in CD4+ T cells, cell type proportion shifts, and global gene expression profile comparisons using Gene Set Enrichment Analysis and Jensen-Shannon Divergence. These results were additionally mirrored in publicly-available scRNA-seq data generated using a similar experimental design. Moreover, we identified confounding gene expression signatures linked to PBMC preparation method (e.g., Trima apheresis), as well as SCMK sample classification biases against activated CD4+ T cells which were recapitulated in two other SCMK-incorporating scRNA-seq datasets. CONCLUSIONS: We demonstrate that (i) mixing PBMCs from unrelated donors under standard scRNA-seq sample preparation conditions (e.g., 30 min co-incubation at 4 °C) does not cause an allogeneic response, and (ii) that Trima apheresis and PBMC sample multiplexing using SCMK reagents can introduce undesirable technical artifacts into scRNA-seq data. Collectively, these observations establish important benchmarks for future cross-sectional immunological scRNA-seq experiments.


Subject(s)
Leukocytes, Mononuclear/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome , Humans , Specimen Handling
16.
J Acquir Immune Defic Syndr ; 83(5): 530-537, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32168200

ABSTRACT

BACKGROUND: Most HIV-infected cells during antiretroviral therapy (ART) persist in lymphoid tissues. Studies disagree on whether suboptimal tissue ART concentrations contribute to ongoing HIV replication during viral suppression. METHODS: We performed a cross-sectional study in virally-suppressed HIV+ participants measuring lymphoid tissue ART [darunavir (DRV), atazanavir (ATV), and raltegravir (RAL)] concentrations by LC-MS/MS assay. Tissue and plasma ART concentrations were used to estimate TPRs and drug-specific tissue:inhibitory concentration ratios (TICs). HIV DNA and sequentially produced HIV RNA transcripts were quantified from rectal biopsies using droplet digital PCR (ddPCR) assays. RESULTS: Tissue samples were collected in duplicate from 19 participants: 38 rectal, 8 ileal (4 RAL, 2 DRV, 2 ATV), and 6 lymph node (4 RAL, 2 DRV) samples. Overall, median TICs were higher for RAL than DRV or ATV (both P = 0.006). Median TICs were lower in lymph nodes vs. ileum (0.49 vs. 143, P = 0.028) or rectum (33, P = 0.019), and all ART levels were below target concentrations. Higher rectal TICs were associated with lower HIV RNA transcripts (read-through, long LTR, and Nef, P all < 0.026) and a lower long LTR RNA/long LTR DNA ratio (P = 0.021). CONCLUSIONS: We observed higher tissue ART concentrations in ileum and rectum compared with lymph nodes. We observed higher HIV transcription in participants with lower rectal ART concentrations. These findings add to the limited data supporting the idea that viral transcription may be influenced by ART concentrations in lymphoid tissues. Further exploration of tissue pharmacokinetics is needed in future HIV eradication strategies.


Subject(s)
Anti-HIV Agents/therapeutic use , Gastrointestinal Tract/drug effects , HIV Infections/drug therapy , HIV-1/drug effects , Lymph Nodes/drug effects , Real-Time Polymerase Chain Reaction/methods , Adult , Antiretroviral Therapy, Highly Active , Atazanavir Sulfate/therapeutic use , Biopsy , CD4-Positive T-Lymphocytes , Cross-Sectional Studies , Darunavir/therapeutic use , Female , Gastrointestinal Tract/pathology , HIV Infections/virology , HIV-1/genetics , Humans , Ileum/drug effects , Ileum/pathology , Lymph Nodes/pathology , Male , Raltegravir Potassium/therapeutic use , San Francisco , Virus Replication/drug effects
17.
Clin Pharmacol Ther ; 105(3): 692-702, 2019 03.
Article in English | MEDLINE | ID: mdl-30137649

ABSTRACT

Disulfiram (DSF) was well tolerated and activated viral transcription (cell-associated unspliced (CA-US) and plasma human immunodeficiency virus (HIV) RNA) in a phase II dose-escalation trial in HIV+ antiretroviral therapy (ART)-suppressed participants. Here, we investigated whether exposure to DSF and its metabolites predicted these changes in HIV transcription. Participants were administered 500 (N = 10), 1,000 (N = 10), or 2,000 (N = 10) mg of DSF for 3 consecutive days. DSF and four metabolites were measured by ultraperformance liquid chromatography-tandem mass spectrometry. Changes in CA-US and plasma HIV RNA were quantified by polymerase chain reaction (PCR) and analyzed in NONMEM. A seven-compartment pharmacokinetic (PK) model demonstrated nonlinear elimination kinetics. The fitted median area under the curve values for 72 hours (AUC0-72 ) were 3,816, 8,386, and 22,331 mg*hour/L, respectively. Higher exposure predicted greater increases in CA-US (maximum effect (Emax ) = 78%, AUC50  = 1,600 µg*hour/L, P = 0.013) but not plasma HIV RNA. These results provide support for further development of DSF as an important drug for future HIV cure strategies.


Subject(s)
Disulfiram/pharmacokinetics , HIV Infections/blood , HIV-1/drug effects , Transcription, Genetic/drug effects , Virus Latency/drug effects , Acetaldehyde Dehydrogenase Inhibitors/pharmacokinetics , Acetaldehyde Dehydrogenase Inhibitors/therapeutic use , Adult , Aged , Disulfiram/therapeutic use , Dose-Response Relationship, Drug , Female , HIV Infections/drug therapy , HIV-1/physiology , Humans , Male , Middle Aged , Tandem Mass Spectrometry/methods , Transcription, Genetic/physiology , Virus Latency/physiology
18.
Lancet HIV ; 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30503324

ABSTRACT

BACKGROUND: Pre-exposure prophylaxis (PrEP) with emtricitabine and tenofovir disoproxil fumarate is highly protective against HIV infection. We report a case of tenofovir-susceptible, emtricitabine-resistant HIV acquisition despite high adherence to daily PrEP. METHODS: Adherence to PrEP was assessed by measuring concentrations of emtricitabine and tenofovir disoproxil fumarate or their metabolites in plasma, dried blood spots, and hair. After seroconversion, genotypic and phenotypic resistance of the acquired virus was determined by standard clinical tests and by single-genome sequencing of proviral genomes. HIV partner services identified the likely transmission partner. FINDINGS: A 21-year-old Latino man tested positive for HIV infection 13 months after PrEP initiation. He had a negative HIV antibody test, but detectable HIV RNA with 559 copies per mL. He reported good adherence to daily PrEP. He was linked to care and immediately started antiretroviral therapy, at which point his RNA was 1544 copies per mL and his HIV antibody test was positive. The HIV genotype revealed Met184Val, Leu74Val, Leu100Ile, and Lys103Asn mutations in reverse transcriptase, and the phenotype showed susceptibility to tenofovir disoproxil fumarate and resistance to emtricitabine. Segmental hair analysis of tenofovir disoproxil fumarate concentrations measured in 1 cm segments of hair from the scalp indicated consistently high adherence to PrEP in each of the 6 months before HIV diagnosis (0·0672-0·0889 ng/mg). Concentrations of tenofovir diphosphate (1012 fmol per punch) and emtricitabine triphosphate (0·266 fmol per punch) in a dried blood spot indicated high adherence over the preceding 6 weeks. Concentrations of emtricitabine (870·5 ng/mL) and tenofovir disoproxil fumarate (188·2 ng/mL) measured in plasma 3 months before HIV seroconversion confirmed adherence in the days preceding that visit. The likely transmission partner was not engaged in HIV primary care and had a similar viral genotype. INTERPRETATION: Acquisition of HIV virus that is susceptible to tenofovir disoproxil fumarate, but resistant to emtricitabine can occur despite high adherence to PrEP. Quarterly screening for HIV and sexually transmitted diseases facilitates early diagnosis in people on PrEP; when combined with prompt linkage to care and partner services this can prevent onward transmission of HIV. FUNDING: US National Institutes of Health.

19.
AIDS Res Hum Retroviruses ; 34(11): 982-992, 2018 11.
Article in English | MEDLINE | ID: mdl-29973058

ABSTRACT

Single-nucleotide polymorphisms (SNPs) in CYP2B6 have been shown to predict variation in plasma efavirenz concentrations, but associations between these SNPs and efavirenz-mediated depression and viral suppression are less well described. We evaluated three SNPs in CYP2B6 (rs3745274, rs28399499, and rs4803419) in Ugandan persons living with HIV. To define exposure, we used previously published pharmacokinetic modeling data to categorize participants as normal, intermediate, and poor efavirenz metabolizers. Our outcomes were probable depression in the first 2 years after antiretroviral therapy (ART) initiation (mean score of >1.75 on the Hopkins Symptom Depression Checklist) and viral suppression 6 months after ART initiation. We fit generalized estimating equation and modified Poisson regression models adjusted for demographic, clinical, and psychosocial characteristics with or without individuals with depression at the time of ART initiation. Among 242 participants, there were no differences in the pre-ART depression or viral load by efavirenz metabolism strata (p > .05). Participants were classified as normal (32%), intermediate (50%), and poor (18%) metabolizers. Seven percent (56/242) of follow-up visits met criteria for depression. Eighty-five percent (167/202) of participants who completed a 6-month visit achieved viral suppression. CYP2B6 metabolizer strata did not have a statistically significant association with either depression [adjusted risk ratio (aRR) comparing intermediate or poor vs. normal, 1.46; 95% confidence interval (CI), 0.72-2.95] or 6-month viral suppression (aRR, 1.01; 95% CI, 0.88-1.15). However, in analyses restricted to participants without pre-ART depression, poorer CYP2B6 metabolism was associated with increased odds of depression (adjusted odds ratio, 4.11; 95% CI, 1.04-16.20). Efavirenz-metabolizing allele patterns are strongly associated with risk of incident depression. Future work should elucidate further region-specific gene-environment interactions and whether alternate polymorphisms may be associated with efavirenz metabolism.


Subject(s)
Anti-HIV Agents/therapeutic use , Benzoxazines/therapeutic use , Cytochrome P-450 CYP2B6 Inducers/therapeutic use , Cytochrome P-450 CYP2B6/genetics , Depression/epidemiology , HIV Infections/drug therapy , Adult , Alkynes , Anti-HIV Agents/adverse effects , Anti-HIV Agents/pharmacology , Benzoxazines/adverse effects , Benzoxazines/pharmacology , Cyclopropanes , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP2B6 Inducers/adverse effects , Cytochrome P-450 CYP2B6 Inducers/pharmacology , Depression/chemically induced , Female , Genotype , HIV/drug effects , HIV Infections/epidemiology , HIV Infections/genetics , HIV Infections/psychology , Humans , Male , Odds Ratio , Polymorphism, Single Nucleotide , Prospective Studies , Uganda/epidemiology , Viral Load
20.
J Infect Dis ; 214 Suppl 2: S44-50, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27625430

ABSTRACT

Despite marked improvements in the modern treatment era, human immunodeficiency virus (HIV)-infected individuals, particularly those who initiated antiretroviral therapy (ART) at advanced disease stages, continue to have increased age-related morbidity and mortality, compared with the general population. Immune activation and inflammation persist despite suppressive ART and predict many of these morbidities. The goal of this review is to examine the evidence suggesting a link between the persistent inflammatory state and morbidity and mortality in this setting, to describe the impact of early ART initiation on these factors, and to highlight important unanswered questions for the field. We also advance a hypothesis to explain why some morbidities-and their root inflammatory drivers-may be prevented more than others by early ART initiation.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/immunology , HIV Infections/mortality , Antiretroviral Therapy, Highly Active , Biomarkers , Clinical Trials as Topic , Coinfection , HIV Infections/drug therapy , Humans , Immunity, Innate , Inflammation/immunology , Life Style
SELECTION OF CITATIONS
SEARCH DETAIL
...